Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Optimization of High Pressure Common Rail Electro-injector Using Genetic Algorithms

2001-05-07
2001-01-1980
The aim of the present investigation is the implementation of an innovative procedure to optimise the design of a high pressure common rail electro-injector. The optimization method is based on the use of genetic programming, a search procedure developed by John Holland at the University of Michigan. A genetic algorithm (GA) creates a random population which evolves combining the genetic code of the most capable individual of the previous generation. For the present investigation an algorithm which includes the operators of crossover, mutation and elitist reproduction has been developed. This genetic algorithm allows the optimization of both single and multicriteria problems. For the determination of the multi-objective fitness function, the concept of Pareto optimality has been implemented. The performance of the multiobjective genetic algorithm was examined by using appropriate mathematical functions and was compared with the single objective one.
Technical Paper

Optimization of the Combustion Chamber of Direct Injection Diesel Engines

2003-03-03
2003-01-1064
The optimization procedure adopted in the present investigation is based on Genetic Algorithms (GA) and allows different fitness functions to be simultaneously maximized. The parameters to be optimized are related to the geometric features of the combustion chamber, which ranges of variation are very wide. For all the investigated configurations, bowl volume and squish-to-bowl volume ratio were kept constant so that the compression ratio was the same for all investigated chambers. This condition assures that changes in the emissions were caused by geometric variations only. The spray injection angle was also considered as a variable parameter. The optimization was simultaneously performed for different engine operating conditions, i.e. load and speed, and the corresponding fitness values were weighted according to their occurrence in the European Driving Test.
Technical Paper

Dynamic Modeling of a PEM Fuel Cell for a Low Consumption Prototype

2013-04-08
2013-01-0480
This investigation describes the dynamic modeling of a PEM (Polymer Electrolyte Membrane) fuel cell applied to a commercial 1kW dead end anode configuration. The system is tested and validated through some initial experiments. The model allows the characterization of the polarization curve, the evaluation of cell performance in terms of efficiency and consumption and the estimation of water production. To this purpose, an experimental set-up has been created using an electronic DC load (connected to a computer by RS232 serial communication) and an NI DAQ CompactRio evaluation board. The target is studying and testing solutions to improve performance, in particular with reference to hydrogen recovery solution from the purge valve. The fuel cell model has been interfaced with a 3D race simulator that is able to reproduce the environment of the competition and the specification of the vehicle.
Technical Paper

A General Platform for the Modeling and Optimization of Conventional and More Electric Aircrafts

2014-09-16
2014-01-2187
The present study aims at the implementation of a Matlab/Simulink environment to assess the performance (thrust, specific fuel consumption, aircraft/engine mass, cost, etc.) and environmental impact (greenhouse and pollutant emissions) of conventional and more electric aircrafts. In particular, the benefits of adopting more electric solutions for either aircrafts at given missions specifications can be evaluated. The software, named PLA.N.E.S, includes a design workflow for the input of aircraft specification, kind of architecture (e.g. series or parallel) and for the definition of each component including energy converter (piston engine, turboprop, turbojet, fuel cell, etc.), energy storage system (batteries, super-capacitors), auxiliaries and secondary power systems. It is also possible to setup different energy management strategies for the optimal control of the energy flows among engine, secondary equipment and storage systems during the mission.
Technical Paper

Experimental Validation of a CFD Model and an Optimization Procedure for Dual Fuel Engines

2014-04-01
2014-01-1314
An analytical methodology to efficiently evaluate design alternatives in the conversion of a Common Rail Diesel engine to either CNG dedicated or dual fuel engine has been presented in a previous investigation. The simulation of the dual fuel combustion was performed with a modified version of the KIVA3V code including a modified version of the Shell model and a modified Characteristic Time Combustion model. In the present investigation, this methodology has been validated at two levels. The capability of the simulation code in predicting the emissions trends when changing pilot specification, like injected amount, injection pressure and start of injection, and engine configuration parameters, like compression ratio and axial position of the diesel injector has been verified. The second validation was related to the capability of the proposed computer-aided procedure in finding optimal solutions in a reduced computational time.
X