Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Numerical Study of the Effects of Droplet Size Distribution on Fuel Transport and Air-Fuel Mixing in a Gasoline Direct-Injection Engine

2003-10-27
2003-01-3100
Numerical simulations are performed to investigate the effects of droplet size distribution on fuel transport and air-fuel mixing in a gasoline direct-injection (GD-I) engine. The engine grid was generated using the K3PREP grid generator and the simulations were carried out using the KIVA-3V Release 2 code. Three size distribution functions were considered, namely the Chi-squared (χ2) and two Rosin-Rammler functions with dispersion parameter, q of 3.5 and 7.5 (RRq=3.5 and RRq=7.5). A new subroutine, which arranges the fuel droplets into a spherical cloud of droplets, was developed to allow the in-cylinder placement of fuel droplets with different droplet size distribution. Two cases of intake valve timing were considered. Results of the simulation showed droplet size distribution to affect fuel dispersion under the influence of the in-cylinder gas flows.
Technical Paper

Effects of Fuel Composition on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine: An Experimental Study using Mie-Scattering and Planar Laser-Induced Fluorescence (PLIF) Techniques

2000-06-19
2000-01-1904
Two-dimensional Mie-scattering and laser-induced fluorescence techniques were applied to investigate the effects of fuel composition on mixture formation within a firing direct-injection spark-ignition (DISI) engine. A comparison was made between the spray characteristics and in-cylinder fuel distributions resulting from the use of a typical multi-component gasoline (European specification premium-grade unleaded), a single-component research fuel (iso-octane), and a three-component research fuel (iso-pentane, iso-octane and n-nonane). Studies were performed at three different injection timings under cold and part-warm conditions. The results indicate that fuel composition affects both the initial spray formation and the subsequent mixture formation process. Furthermore, the sensitivity of the mixing process to the effects of fuel volatility was shown to depend on injection timing.
Technical Paper

The Oxford Cold Driven Shock Tube (CDST) for Fuel Spray and Chemical Kinetics Research

2018-04-03
2018-01-0222
A new reflected shock tube facility, the Cold Driven Shock Tube (CDST), has been designed, built and commissioned at the University of Oxford for investigating IC engine fuel spray physics and chemistry. Fuel spray and chemical kinetics research requires its test gas to be at engine representative pressures and temperatures. A reflected shock tube generates these extreme conditions in the test gas for short durations (order milliseconds) by transiently compressing it through a reflected shock process. The CDST has been designed for a nominal test condition of 6 MPa, 900 K slug of air (300 mm long) for a steady test duration of 3 ms. The facility is capable of studying reacting mixtures at higher pressures (up to 150 bar) than other current facilities, whilst still having comparable size (100 mm diameter) and optical access to interrogate the fuel spray with high speed imaging and laser diagnostics.
X