Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

NVH Development of Aluminum Axles

2015-06-15
2015-01-2188
This paper discusses approaches to properly design aluminum axles for optimized NVH characteristics. By effectively using well established and validated FEA and other CAE tools, key factors that are particularly associated with aluminum axles are analyzed and discussed. These key factors include carrier geometry optimization, bearing optimization, gear design and development, and driveline system dynamics design and integration. Examples are provided to illustrate the level of contribution from each main factor as well as their design space and limitations. Results show that an aluminum axle can be properly engineered to achieve robust NVH performances in terms of operating temperature and axle loads.
Technical Paper

An Application of Variation Simulation - Predicting Interior Driveline Vibration Based on Production Variation of Imbalance and Runout

2011-05-17
2011-01-1543
An application of variation simulation for predicting vehicle interior driveline vibration is presented. The model, based on a “Monte Carlo”-style approach, predicts the noise, vibration and harshness (NVH) response of the vehicle driveline based on distributions of imbalance and runout derived from manufacturing production variation (the forcing function) and the vehicle's sensitivity to the forcing function. The model is used to illustrate the change in vehicle interior vibration that results when changes are made to production variation for runout and imbalance of driveline components, and how those same changes result in different responses based on vehicle sensitivity.
Technical Paper

Attenuation of Driveline Vibrations through Tuning of Propeller Shaft Liners

2011-05-17
2011-01-1547
The installation of various liners into the propeller shaft tube is a traditional driveline NVH treatment to attenuate driveline vibration. The most commonly used liners include rolled paper, C-cut cardboard, corrugated cardboard, etc. These traditional liner treatments are expected to provide damping to the driveline system to reduce the vibration levels. However their added level of damping and effectiveness to the driveline system are limited, particularly when dealing with driveline gear mesh vibration and noise. This paper presents a novel type of liner treatment - tunable liners. The liner is designed such that it functions as a tuned dynamic vibration absorber. Through proper design of the liner, it can be tuned for bending and torsion modes at the same time. The liner design parameters and their impact on the frequency tuning are analyzed and studied through both physical testing and FEA analysis.
Technical Paper

Balancing Competing Design Imperatives to Achieve Overall Driveline NVH Performance Objectives

2005-05-16
2005-01-2308
Today's emerging 4-wheel-drive and all-wheel-drive vehicle architectures have presented new challenges to engineers in achieving low driveline system noise. In the meantime there's also a constant pressure from increasingly stringent noise level requirements. A driveline system's NVH (noise, vibration and harshness) performance is controlled by various noise sources and mechanisms. The common noise issues include the axle gear whine, driveline imbalance/run-out, 2nd order kinematics, engine torque fluctuation, engine idle shake etc. Unfortunately various design alternatives may improve some NVH performance attributes while degrading others. It is important to balance the requirements for these noise sources to achieve an optimized driveline system NVH. However, very little literature is found on this topic. In this paper, discussions on methodologies in balancing these different driveline NVH requirements are presented.
Technical Paper

Variation Reduction of Axle System NVH

2005-05-16
2005-01-2309
This paper presents a study of axle system NVH (noise, vibration and harshness) performance using DFSS (Design for Six Sigma) methods with the focus on the system robustness to typical product variations (tolerances / manufacturing based). Instead of using finite element as the simulation tool, a lumped parameter system dynamics model developed in Matlab/Simulink is used in the study, which provides an efficient way in conducting large size analytical DOE (Design of Experiment) and stochastic studies. The model's capability to predict both nominal and variance performance is validated with vehicle test data using statistical hypothesis test methods. Major driveline system variables that contribute to axle gear noise are identified and their variation distributions in production are obtained through sampling techniques.
Technical Paper

Geartrain Noise Optimization in an Electrical Drive Unit

2015-06-15
2015-01-2365
Alternative powertrains, in particular electric and plug-in hybrids, create a wide range of unique and challenging NVH (noise, vibration & harshness) issues in today's automotive industry. Among the emerging engineering challenges from these powertrains, their acoustic performances become more complicated, partially due to reduced ambient masking noise level and light weight structure. In addition, the move away from conventional displacement engines to electrical drive units (EDU) has created a new array of NVH concerns and dynamics, which are relatively unknown as compared to the aforementioned traditional setups. In this paper, an NVH optimization study will be presented, focusing on four distinct factors in electric drive unit gear mesh source generation and radiation: EDU housing and bearing dynamics, gear geometry, EDU shafting torsional dynamics, and EDU housing structure. The study involves intensive FEA modeling/analyses jointly with physical validation tests.
Technical Paper

Dynamic Decoupling of Driveline Dynamics from NVH Driveline Dynamometer: an Industry Sponsored Senior Design Project

2015-06-15
2015-01-2347
The American Axle & Manufacturing Inc. driveline dynamometer provides immense value for experimental validation of product NVH performances. It has been intensively used to evaluate product design robustness in terms of build variations, mileage accumulation, and temperature sensitivity. The current driveline dynamometer input motor system has multiple torsional modes which create strong coupling with test part gear mesh dynamics. Mechanical Engineering seniors at Lawrence Technological University designed, fabricated, and validated a mechanism to decouple the driveline dynamics from the driveline dynamometer dynamics. The student-designed decoupler mechanism is presented with experimental validation of effectiveness in decoupling driveline dynamometer dynamics from the driveline under test.
Technical Paper

Driveline NVH Integration of An NA Truck Program

2019-06-05
2019-01-1559
In the current automotive industry, it is common that the driveline subsystem and components are normally from different automotive suppliers for OEMs. In order to ensure proper system integration and successful development of driveline system NVH performances, collaboration efforts between OEMs and suppliers are very demanding and important. In this paper, a process is presented to achieve successfulness in developing and optimizing vehicle integration through effective teamwork between a driveline supplier and a major OEM. The development process includes multiple critical steps. They include target development and roll down, targets being specific and measurable, comprehension of interactions of driveline and vehicle dynamics, accurate definition of sensitivity, proper deployment of modal mapping strategy, which requires open data sharing; and system dynamics and optimization.
Technical Paper

Design Optimization of Differential Bevel Gear for NVH Improvement

2019-06-05
2019-01-1552
With fast pacing development of automobile industry and growing needs for better driving experience, NVH performance has become an important aspect of analysis in new driveline product development especially in hybrid and electric powered vehicles. Differential bevel gear has significant role in the final drive. Unlike parallel axis gears such as spur or helical gear, bevel gear mesh shows more complicated characteristics and its mesh parameters are mostly time-varying which calls for more extensive design and analysis. The purpose of this paper is to conduct design study on a differential bevel gear unit under light torque condition and evaluate its NVH characteristics. Unloaded tooth contact analysis (UTCA) of those designs are conducted and compared for several design cases with different micro geometry to investigate their pattern position and size variation effects on NVH response.
X