Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Installation Effects on the Flow Generated Noise from Automotive Electrical Cooling Fans

2020-09-30
2020-01-1516
With the electrification of road vehicles comes new demands on the cooling system. Not the least when it comes to noise. Less masking from the driveline and new features, as for example, cooling when charging the batteries drives the need for silent cooling fans. In this work a cluster installation of electrical fans is studied in different generalized installations and operating conditions. The fans are installed in a test rig where the operation could be controlled varying the speed, flow rate and pressure rise over the fan. On the vehicle side of the fan a generalized packaging space (similar to an engine bay for conventional vehicles) is placed. In this packaging space different obstruction can be placed to simulate the components and radiators used in the vehicle. Here generalized simple blocks in different configuration are used to provide well defined and distinct test cases.
Journal Article

Particle Number Reduction in Automotive Exhausts Using Acoustic Metamaterials

2017-03-28
2017-01-0909
Air pollution caused by exhaust particulate matter (PM) from vehicular traffic is a major health issue. Increasingly strict regulations of vehicle emission have been introduced and efforts have been put on both the suppression of particulate formation inside the engine cylinders and the development of after-treatment technologies such as filters. With modern direct injected engines that produce a large number of really small sub-micron particles, the focus has increased even further and now also includes a number count. The problem of calculating particle trajectories in flow ducts like vehicle exhaust systems is challenging but important to further improve the technology. The interaction between particles and oscillating flows may lead to the formation of particle groups (regions where the particle concentration is increased), yielding a possibility of realizing particle agglomeration.
Technical Paper

Particle Number Reduction in Automotive Exhausts by Controlled Grouping

2018-04-03
2018-01-0330
Particulate emissions from internal combustion engines is a well-known issue with direct implications on air quality and human health. Recently there is an increased concern about the high number of ultrafine particles emitted from modern engines. Here we explore a concept for grouping these particles, reducing their total number and shifting the relative size distribution towards fewer larger particles. Particles having a non-zero relaxation time may be manipulated to yield regions of high particle concentration, accommodating agglomeration, when introduced into an oscillating flow field. The oscillating flow field is given by simple periodic geometrical changes of the exhaust pipe itself. It is discussed how the shape of these geometrical changes and also the engine pulses effect the grouping behavior for different size particles, including when Brownian motion becomes relevant.
Technical Paper

Study of Thermoacoustic Engine for Automotive Exhaust Waste Heat Recovery

2019-04-02
2019-01-1257
In this paper, the travelling-wave thermoacoustic engine (TAE) and its application for recovery of waste heat from automotive exhaust systems is investigated. The aim is to give some insight into the potential, but also limitations of the technique for practical applications. This includes packaging, physical boundary conditions as heating and cooling available, but also system perspectives as influence of legislative drive cycles and degree of hybridization. First, the travelling-wave TAE is described as a low-order acoustic network in the frequency domain. Models, including non-linear effects, are set up for every component in the network to describe the propagation and dissipation of acoustic waves. For a TAE with looped structure, the continuity of pressure and volumetric velocity is employed to determine the saturation pressure, as well as the stable operating point. These models are validated against experimental data available in the literature [1].
Technical Paper

Designing Thermoacoustic Engines for Automotive Exhaust Waste Heat Recovery

2021-04-06
2021-01-0209
Thermoacoustic engine has been proven to be a promising technology for automotive exhaust waste heat recovery to save fossil fuel and reduce emission thanks to its ability to convert heat into acoustic energy which, hence, can be harvested in useful electrical energy. In this paper, based on the practical thermodynamic parameters of the automotive exhaust gas, including mass flow rate and temperature, two traveling-wave thermoacoustic engines are designed and optimized for the typical heavy-duty and light-duty vehicles, respectively, to extract and reutilize their exhaust waste heat. Firstly, nonlinear thermoacoustic models for each component of a thermoacoustic engine are established in the frequency domain, by which any potential steady operating point of the engine is available.
Journal Article

Designing Regenerators of Thermoacoustic Engines for Automotive Waste Heat Recovery

2020-04-14
2020-01-0414
Extraction and utilization of automotive waste exhaust heat is an effective way to save fuel and protect the environment. One promising technology for this purpose is the thermoacoustic engine, where thermal energy is converted to mechanical energy in terms of high amplitude oscillations. The core component in a travelling-wave thermoacoustic engine is its regenerator where the process of energy conversion is mainly realized. This paper introduces a strategy for the design of the regenerator for applications in typical light- and heavy-duty vehicles. Starting from 1-D linear thermoacoustic theory, the nonlinear effects (given by the high amplitude oscillations) are modelled as acoustic resistances and introduced into the basic linear equations to estimate the nonlinear dissipations in the regenerator. Then, a few dimensionless parameters are derived by normalizing these thermoacoustic equations.
Journal Article

Study of Installation Effects on Automotive Cooling Fan Noise

2022-06-15
2022-01-0935
Vehicle electrification is one of the biggest trends in the automotive industry. Without the presence of combustion engine, which is the main noise source on conventional vehicles, noise from other components becomes more perceivable; among these components, the cooling fan is one of the major noise sources, especially during battery charging. The design of cooling fan modules is usually carried out in the early stage before building prototype vehicles. Therefore, understanding the installation effects of the cooling fan on the radiated sound is essential to secure good customer satisfaction. In this study, three different measurement setups of cooling fans are carried out: free field, wall mounted, and in-vehicle measurement. Four cooling fan prototypes with different fan blade designs are used in each measurement. Correlations of these measurements are investigated through comparisons of the measurement results.
X