Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

The Acoustic Impedance of a Wide Side Branch Orifice: Experimental Determination Using Three-Port Methodology

2009-05-19
2009-01-2043
The acoustic impedance of a circular, confined, side branch orifice subjected to grazing flow is studied. Two geometries are tested. In both geometries, the side branch dimension is of the same order as that of the main duct. The system is viewed as an acoustic three-port, whose passive properties are described by a system matrix. The impedance is studied with the acoustic field incident at different ports, which is shown to influence the results significantly. When excited from the leading edge or from the side branch, an interaction of the hydrodynamic and acoustic fields is triggered, while excitation from the trailing edge does not trigger such an interaction. For both the resistance and the reactance (here expressed as an end correction) the results vary in the three possible excitation cases. In the quasi-stationary limit the resistance is given by a loss coefficient times the Mach number, and the end correction collapses to a single value.
Journal Article

A Note on the Applicability of Thermo-Acoustic Engines for Automotive Waste Heat Recovery

2016-04-05
2016-01-0223
A thermo-acoustic engine is a device converting thermal energy into high amplitude acoustic waves that can be harvested, for example, to obtain electricity. The core of the device is a stack/regenerator along which a temperature gradient is created using one hot and one cold heat exchanger. Correctly designed, the thermal interaction between the working fluid and the regenerator assists in amplifying incident acoustic waves. Previous studies have indicated good efficiency obtained with a system of low geometrical complexity. However, for the practical application of this technique it is vital to understand and identify critical design parameters and operating conditions. This is of special interest in automotive applications where the operating conditions vary significantly over a drive cycle. This works aims at providing a framework for studying the net power generation over a drive cycle.
Technical Paper

The Flow Reversal Resonator

2007-05-15
2007-01-2203
The flow reversal chamber is a commonly used element in practical silencer design. To lower its fundamental eigenfrequency, it is suggested to acoustically short circuit the inlet and outlet duct. In the low frequency limit such a configuration will correspond to a Helmholtz resonator, but with a choked flow through the short circuit, the main flow will be forced through the expansion volume. For the proposed concept, the flow reversal resonator, a theoretical model is derived and presented together with transfer matrix simulations. The possible extension to a semi active device as well as the influence of mean flow on the system is investigated experimentally. Finally the concept is implemented on a truck silencer. The results indicate that the flow reversal resonator would prove an interesting complement to traditional side branch resonators. The attenuation bandwidth is broader and it can be packaged very efficiently.
Technical Paper

Aeroacoustics of Heavy Duty Truck Side Mirrors - An Experimental Study

2018-06-13
2018-01-1516
Side mirrors are a known source of aerodynamically generated noise in vehicles. In this work we focus on mirrors for heavy duty trucks, they are large, often not designed with main focus on aero-acoustics and are located in a cumbersome position on the up-right A-pillar of European trucks. First the test method itself is discussed. To allow fast and cost effective design loops a bespoke vehicle, where the powertrain is separated from the cab, is developed. This vehicle can be run on a standard test track. While running the tests the wind speed is monitored, any variations are then compensated for in the post processing allowing averaging over longer time periods. For the mirror tests the door of the vehicle was especially trimmed to reduce other transmission paths into the cab than the side window. Additionally other possible aeroacoustic sources were reduced as much as practically possible.
Journal Article

Study of Installation Effects on Automotive Cooling Fan Noise

2022-06-15
2022-01-0935
Vehicle electrification is one of the biggest trends in the automotive industry. Without the presence of combustion engine, which is the main noise source on conventional vehicles, noise from other components becomes more perceivable; among these components, the cooling fan is one of the major noise sources, especially during battery charging. The design of cooling fan modules is usually carried out in the early stage before building prototype vehicles. Therefore, understanding the installation effects of the cooling fan on the radiated sound is essential to secure good customer satisfaction. In this study, three different measurement setups of cooling fans are carried out: free field, wall mounted, and in-vehicle measurement. Four cooling fan prototypes with different fan blade designs are used in each measurement. Correlations of these measurements are investigated through comparisons of the measurement results.
X