Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of Empirical Shear Fracture Criterion for AHSS

2010-04-12
2010-01-0977
The conventional forming limit curve (FLC) has been widely and successfully used as a failure criterion to detect localized necking in stamping. However, in stamping advanced high strength steels (AHSS), under certain circumstances such as stretching-bending over a small die radius, the sheet metal fails much earlier than predicted by the FLC. This type of failure on the die radius is commonly called “shear fracture.” In this paper, the laboratory Stretch-Forming Simulator (SFS) and the Bending under Tension (BUT) tester are used to study shear fracture occurring during both early and later stages of stamping. Results demonstrate that the occurrence of shear fracture depends on the combination of the radius-to-thickness (R/T) ratio and the tension/stretch level applied to the sheet during stretching or drawing. Based on numerous experimental results, an empirical shear fracture limit curve or criterion is obtained.
Technical Paper

Specifying Steel Properties and Incorporating Forming Effects in Full Vehicle Impact Simulation

2002-03-04
2002-01-0639
Mechanical properties of as-rolled steels used in a vehicle vary with many parameters including gages, steel suppliers and manufacturing processes. The residual forming and strain rate effects of automotive components have been generally neglected in full vehicle crashworthiness analyses. Not having the above information has been considered as one of the reasons for the discrepancy between the results from computer simulation models and actual vehicle tests. The objective of this study is to choose the right material property for as-rolled steels for stamping and crash computer simulation, and investigate the effect of forming and strain rate on the results of full vehicle impact analyses. Major Body-in-White components which were in the crash load paths and whose material property would change in the forming process were selected in this study. The post-formed thickness and yield stress distributions on the components were estimated using One Step forming analyses.
Technical Paper

Effect of Fiber Orientation on the Mechanical Properties of Long Glass Fiber Reinforced (LGFR) Composites

2014-04-01
2014-01-1049
Long glass fiber reinforced (LGFR) composites have been widely used in automotive industry to reduce vehicle weight and maintain relatively high mechanical performances. Due to the injection molding process, the distribution of fiber orientations varies at different locations and through the panel thickness, resulting in anisotropic and non-uniform mechanical properties. The current practice of computer modeling of these materials is generally using isotropic properties adjusted by a certain scale factor. The effect of fiber orientation is not carefully considered due to the complexity of fiber orientation distribution in the LGFR parts. The purpose of this paper is to identify key factors affecting vehicle attribute performances where LGFR composites are used; and provide an efficient way for accurate CAE modeling of LGFR composites. In this study, tensile coupons cut from a simple geometric injection molded plaque are tested.
X