Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Diesel Engine Fuel Economy Improvement Enabled by Supercharging and Downspeeding

2012-09-24
2012-01-1941
In order to improve power density, the majority of diesel engines have intake manifold pressures above atmospheric conditions. This allows for the introduction of more fuel, which results in more power. Except for a few applications, these engines receive charged air from a turbocharger. The turbocharger develops boost by converting exhaust gas energy into power. This power is then used to compress the intake charge. The medium- and heavy-duty engine markets have both stringent regulatory targets and customer demand for improved fuel efficiency. Two approaches used to meet fuel efficiency targets are downspeeding and downsizing. Until now, the industry has adapted to the turbocharger lag experienced during a transient acceleration event. This performance deficiency is severely exaggerated when the displacement and speed of an engine are reduced. The solution proposed to improving fuel economy, while maintaining equivalent performance, is supercharging.
Technical Paper

Transient Drive Cycle Modeling of Supercharged Powertrains for Medium and Heavy Duty On-Highway Diesel Applications

2012-09-24
2012-01-1962
The problem with traditional drive cycle fuel economy analysis is that kinematic (backward looking) models do not account for transient differences in charge air handling systems. Therefore, dynamic (forward looking) 1D performance simulation models were created to predict drive cycle fuel economy which encompass all the transient elements of fully detailed engine and vehicle models. The transient-capable technology of primary interest was mechanical supercharging which has the benefit of improved boost response and "time to torque." The benefits of a supercharger clutch have also been evaluated. The current US class 6-8 commercial vehicle market exclusively uses turbocharged diesel engines. Three vehicles and baseline powertrains were selected based on a high-level review of vehicle sales and the used truck marketplace. Fuel economy over drive cycles was the principal output of the simulation work. All powertrains are based on EPA 2010 emission regulations.
X