Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

A General 3D Model to Analyze Particle Transport Into a Partial-Flow-Particulate-Filter

2010-04-12
2010-01-0881
Emission control efficiency and limited fuel consumption penalty and are the main design factors driving the development of engine-after-treatment exhaust systems according to both ACEA/DOE targets and continental regulations. The particulate-filter is certainly a critical technology to this aim as usually presents very high pm reduction efficiencies (even more than 90% on a mass basis depending on soot loading) leading however to a back pressure increase and eventually to an appreciable fuel consumption penalty. Nevertheless, it is in general discussion that health hazard related to particulate depends primarily on total number of emitted particles rather than on mass. The partial-flow-filter has been recently developed presenting lower reduction efficiencies on a mass basis but also a reduced penalty on fuel consumption.
Technical Paper

3D Unsteady Modelling of the Loading Process in a Diesel Engine PM-Filter

2007-04-16
2007-01-1132
Particulate Matter (PM) filters are becoming a standard component of Diesel engines exhaust aftertreatment devices to comply with the forthcoming engine emission regulations. However, cost reduction and durability are still critical issues in particular for the integration of the PM-filter with other components of the after-treatment system (e.g. pre-turbo-catalyst, close-coupled-catalyst, PM-filter, SCR). To respect functional (available temperature and gas composition) and space restraints, very complex shapes may result from the design causing tortuous flow patterns and influencing the flow distribution into the PM-filter. Uneven soot distributions in the filter may cause a non-homogeneous development of filter regeneration, leading to failures, for example due to the occurrence of large temperature gradients during the oxidation of soot deposits.
Technical Paper

Experimental-Numerical Analysis of Mass Transfer in Standard and Longitudinal Structured (LS) Substrates

2009-04-20
2009-01-1270
The design of compact and efficient Diesel Oxidation Catalysts (DOC) is primarily important to comply with emission regulations not increasing engine fuel consumption at the same time. To design DOCs, Sherwood number correlations are typically used to calculate mass transfer by varying operating conditions in terms of catalyst volume, active area and mass flow rate. To that aim, Sherwood number trend over channel length has been extensively studied during last decades. However, Sherwood number correlations are highly dependent on channel geometry, and on the possible presence of special structures (such as blades, fins or bumps). These modifications, which characterize the latest developments in substrate technology, allow to improve mass transfer performance and require a special characterization.
Technical Paper

Analysis of Combustion Instability Phenomena in a CNG Fueled Heavy-Duty Turbocharged Engine

2001-05-07
2001-01-1907
The use of Compressed Natural Gas as an alternative fuel in urban transportation is nearly established and represents an efficient short and medium term solution to face with urban air pollution. However, in order to completely exploit its potential, the engine needs to be specifically designed to operate with this fuel. In the latest years, the authors have investigated the performances of a Heavy Duty Turbocharged CNG fuelled engine both experimentally and by using some analytical tools specifically developed by them which have been used for the engine optimisation. In the present paper the simulation approach has been enlarged by means of a co-operative use of a CFD code and experimental analysis on the actual engine. The numerical simulation of combustion process has, in fact, been used, to interpret series of pressure cycles, aiming to analyse how cyclic fluctuations influence engine behaviour in terms of combustion efficiency and temperature and pollutant distribution.
Technical Paper

Natural Gas Fueled Engines Modeling under Partial Stratified Charge Operating Conditions

2017-09-04
2017-24-0093
Using natural gas in internal combustion engines (ICEs) is emerging as a promising strategy to improve thermal efficiency and reduce exhaust emissions. One of the main benefits related to the use of this fuel is that the engine can be run with lean mixtures without compromising its performances. However, as the mixture is leaned out beyond the Lean Misfire Limit (LML), several technical problems are more likely to occur. The flame propagation speed gradually decreases, leading to a slower heat release and a low combustion quality, thus increasing the occurrence of misfiring and incomplete combustions. This in turn results in a sharp increment in CO and UHC emissions, as well as in cycle-to-cycle variability. In order to limit the above-mentioned problems, different solutions have been proposed over the last decade.
Technical Paper

Model Based Design Procedure of After Treatment Systems for Non-Road Diesel Engines

2011-09-11
2011-24-0186
In 2011-2013, regulations will be tightened for non-road vehicles, via the application of Stage III-B standards in Europe. With state-of-the-art technology (high pressure common rail, cooled EGR), non-road diesel engines will require DPFs to control PM, as 90% reduction is requested with respect to STAGE III-A standards. Additional challenges may also foresee the obtainment of STAGE III-B standards with STAGE III-A engine technology, by means of retrofit systems for PM control. In that case, retrofit systems must furthermore guarantee simple control systems, and must be robust especially in terms of limited back pressure increase during normal operation. Moreover, retrofit systems must offer flexibility from the design point of view, in order to be correctly operated with several engines of same class, possibly characterized by totally different PM flow rates, temperature, NOx and O₂ availability.
Technical Paper

Fuel Cell Hybrid Electric Vehicle: Driving Cycle Impact on Control Strategy Design and System Performances

2022-09-16
2022-24-0003
According to European Union strategies, hydrogen technologies have a significant potential for the decarbonization of the automotive sector. Fuel Cells are considered a highly sustainable alternative to internal combustion engines for hybrid powertrain solutions. Since experimental tests on real prototypes are extremely costly in terms of time and resources, they represent a limit to the development rapidity of such complex vehicles. Consequently, simulation models are gaining further importance for their intrinsic time- and cost-saving characteristics, while their predictive capability is crucial. Accordingly, the development of the so-called “digital twins” able to accurately represent the real-time digital counterpart of a physical system has become an important research issue.
Technical Paper

An Analysis of 3D Simulation of SI Combustion with an Improved Version of the KIVA-3V Code: Numerical Formulation and Experimental Validation

2003-03-03
2003-01-0012
The correct simulation of combustion process allows to better face several SI engines design problems, not only for innovative mixture formation concepts (stratified or ultra-lean charge), but for traditional homogeneous mixture as well. Even though many commercial codes are able to describe the complex 3-D non reacting fluid dynamics in ICE, the simulation of high turbulent flame propagation does not seem to be a completely solved problem yet. In this work a comparison between two different turbulent combustion models (a characteristic time based one by Abraham and Reitz [2, 15, 16] and a flamelet based one by Cant and AbuOrf [4, 20]) has been performed using KIVA-3V code to assess simulation reliability. Models predictive capabilities have been tested with reference to specific data acquired at the engine test bench of Tor Vergata Mechanical Engineering Department on a Fiat Punto 1242 cc 8 valves SI engine over a wide range of operating conditions.
Technical Paper

Conceptual Design and Modeling of a Fuel Cell Pedal Assisted Bicycle

2004-09-27
2004-32-0049
Pedal Assisted Bicycles (PAB) popularity is fast growing in urban areas due to their low energy consumption and environmental impact. In fact, when electrically moved, they are zero emission vehicles with very low noise emissions as well. These positive characteristics could be even improved by coupling a PAB with a fuel cell based power generation system, so increasing the vehicle autonomy without influencing their emissions and consumption performances. In this paper a conceptual Fuel Cell Pedal Assisted Bicycle (FC-PAB) design with compact metal hydride hydrogen storage is analysed by means of a mixed experimental and numerical approach. Even though the power source integration for such a vehicle is simpler than that for a car, it still represents a challenging effort maximizing PAB vehicle autonomy and minimizing, at the same time, its weight.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
X