Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Experimental-Numerical Analysis of Nitric Oxide Formation in Partially Stratified Charge (PSC) Natural Gas Engines

2009-11-02
2009-01-2783
Lean burn natural gas engines have high potential in terms of efficiency and NOx emissions in comparison with stoichiometric natural gas engines, and much lower particulate emissions than diesel engines. They are a promising solution to meet the increasingly stringent exhaust emission targets for both light and heavy-duty engines. Partially Stratified-Charge (PSC) is a novel concept which was conceived by prof. Evans (University of British Columbia, Vancouver). This technique allows to further limit pollutant emissions and improve efficiency of an otherwise standard spark-ignition engine fuelled by natural gas, operating with lean air-fuel ratio. The potential of the PSC technique lies in the control of load without throttling by further extending the lean flammability limit.
Journal Article

A General 3D Model to Analyze Particle Transport Into a Partial-Flow-Particulate-Filter

2010-04-12
2010-01-0881
Emission control efficiency and limited fuel consumption penalty and are the main design factors driving the development of engine-after-treatment exhaust systems according to both ACEA/DOE targets and continental regulations. The particulate-filter is certainly a critical technology to this aim as usually presents very high pm reduction efficiencies (even more than 90% on a mass basis depending on soot loading) leading however to a back pressure increase and eventually to an appreciable fuel consumption penalty. Nevertheless, it is in general discussion that health hazard related to particulate depends primarily on total number of emitted particles rather than on mass. The partial-flow-filter has been recently developed presenting lower reduction efficiencies on a mass basis but also a reduced penalty on fuel consumption.
Technical Paper

3D Unsteady Modelling of the Loading Process in a Diesel Engine PM-Filter

2007-04-16
2007-01-1132
Particulate Matter (PM) filters are becoming a standard component of Diesel engines exhaust aftertreatment devices to comply with the forthcoming engine emission regulations. However, cost reduction and durability are still critical issues in particular for the integration of the PM-filter with other components of the after-treatment system (e.g. pre-turbo-catalyst, close-coupled-catalyst, PM-filter, SCR). To respect functional (available temperature and gas composition) and space restraints, very complex shapes may result from the design causing tortuous flow patterns and influencing the flow distribution into the PM-filter. Uneven soot distributions in the filter may cause a non-homogeneous development of filter regeneration, leading to failures, for example due to the occurrence of large temperature gradients during the oxidation of soot deposits.
Technical Paper

An Experimental-Numerical Approach to Reduce Emissions of a Dual Fuel Diesel-Natural Gas Engine

2009-09-13
2009-24-0099
Conversion from diesel to dual fuel (diesel and natural gas) operation may represent an attractive retrofit technique to get a better PM-NOx trade-off in a diesel engine, with no major modifications of the original design. In the proposed paper, an Euro 2 heavy duty diesel engine, converted for dual fuelling, has been studied and tested to reduce pollutant emissions. Throttled stoichiometric with EGR and lean burn technologies have been selected as control strategies. A mixed experimental-numerical approach has been utilized to analyze the engine behavior by varying key operating conditions such as throttling, natural gas/diesel oil percentage and EGR. The model, based on a 3D approach, has been used mainly to understand the evolution of the distribution of the most important parameters in the combustion chamber.
Technical Paper

A Mixed Numerical-Experimental Analysis Procedure for Non-Blocking Metal Supported Soot Trap Design

2002-10-21
2002-01-2782
Metal based Diesel Particulate Filters (PM-TRAPs) could represent a short time solution to face with particulate (and NOx) emissions with a small influence on CO2 emission. In fact, the operation principle of the PM-TRAP, based on fluid dynamical behavior of exhaust flow in “ad hoc” shaped geometries, allows to separate the particle content of exhaust-gases but needs to be carefully assessed to optimize filter performances. In this paper a mixed numerical and experimental procedure has been developed; it allows to finely tune the design parameters which can be used to achieve pre-defined targets in terms of particulate matter and fuel consumption. By adopting the previously declared procedure, a PM-TRAP “optimal” geometry has been chosen. Its performance has been verified with respect to experimental data. Results are encouraging and suggest further development of the system.
Technical Paper

Natural Gas Fueled Engines Modeling under Partial Stratified Charge Operating Conditions

2017-09-04
2017-24-0093
Using natural gas in internal combustion engines (ICEs) is emerging as a promising strategy to improve thermal efficiency and reduce exhaust emissions. One of the main benefits related to the use of this fuel is that the engine can be run with lean mixtures without compromising its performances. However, as the mixture is leaned out beyond the Lean Misfire Limit (LML), several technical problems are more likely to occur. The flame propagation speed gradually decreases, leading to a slower heat release and a low combustion quality, thus increasing the occurrence of misfiring and incomplete combustions. This in turn results in a sharp increment in CO and UHC emissions, as well as in cycle-to-cycle variability. In order to limit the above-mentioned problems, different solutions have been proposed over the last decade.
Technical Paper

Particle Number Emissions: An Analysis by Varying Engine/Exhaust-System Design and Operating Parameters

2011-09-11
2011-24-0170
An increasing concern has been growing in the last years toward health effects due to Particulate Matter (PM) emissions. This triggered the widespread diffusion of Diesel Particulate Filters (DPFs), which equip almost every Diesel car and truck on the market, allowing to get large reduction (in the order of 95% and more) in terms of PM mass. However, PM health effects are believed to be more related to particle number rather than to particle mass. This gave rise in Europe to new regulations for passenger cars on total particle number, that will be introduced from EURO6 on. Engine/Exhaust-System assembly is therefore under investigation, to better understand the effectiveness of aftertreatment components toward particle number reduction, especially by varying engine and exhaust-system design/operating conditions, and to compare particle number emissions to particle mass emissions.
Technical Paper

Effects of Biodiesel Distillation Process of Waste Cooking Oil Blends on DPF Behavior

2012-09-10
2012-01-1663
The use of biodiesel has been widely accepted as an effective solution to reduce greenhouse emissions. The high potential of biodiesel in terms of PM emission reduction may represent an additional motivation for its wide use. This potential is related to the oxygenated nature of biodiesel, as well as its lower PAH and S, which leads, in general, to lower PM emissions as well as equal or slightly higher NOx emissions. According to these observations a different behavior of the Aftertreatment System (AS), especially as far as control issues of the Diesel Particulate Filter are concerned is also expected. The competition with the food sector is currently under debate, thus, besides second generation biofuels (e.g. from algae), the transesterification of Waste Cooking Oil (WCO) is another option, however needing further insight.
Technical Paper

Diesel Engine Biofuelling: Effects of Ash on the Behavior of the Diesel Particulate Filter

2013-09-08
2013-24-0165
The use of biodiesels is an effective way to limit greenhouse emissions and partly limit the dependence on fossil primary sources. Biodiesel fuels also show interesting features in terms of PM-NOx emissions trade-off that appears more favorable toward an optimized control of the Diesel Particulate Filter (DPF). In fact, the DPF, which is the assessed aftertreatment technology to reduce PM emissions below the limits, suffers from fuel consumption penalization or excessive exhaust system backpressure, as a function of the frequency of the regeneration process. On the other side, issues such as the impact of the higher ash content of biodiesel on the DPF performance have also to be better understood. In the given scenario, an experimental study on a DEUTZ 4L off-road Diesel engine coupled to a DOC-DPF (Diesel Oxidation Catalyst-Diesel Particulate Filter) system is proposed in this paper.
X