Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

The Influence of Autonomous Driving on Passive Vehicle Dynamics

2018-04-03
2018-01-0551
Traditional vehicles are designed to be inherently stable. This is typically obtained by imposing a large positive static margin (SM). The main drawbacks of this approach are the resulting understeering behavior of the vehicle and, often, a decrease in peak lateral grip due to oversized rear tire characteristics. On the other hand, a lower SM can cause a greater time delay in the vehicle’s response which hardens the control of a vehicle at limit handling for a human being. By introducing advanced autonomous driving features into future vehicles, the human factor can be excluded in limit handling manoeuvers (e.g., obstacle avoidance occurrences) and, consequently, the need for a high SM (i.e., high controllability for human drivers) can be avoided. Therefore, it could be possible to exploit the passive vehicle dynamics and enhance the performance, both in terms of peak grip and transient response.
Technical Paper

Target setting and structural design of an EPS-in-the-Loop test bench for steering feeling simulation

2016-04-05
2016-01-1559
The adoption of Electrical Power Steering (EPS) systems has greatly opened up the possibilities to control the steering wheel torque, which is a critical parameter in the subjective and objective evaluation of a new vehicle. Therefore, the tuning of the EPS controller is not only becoming increasing complicated, containing dozens of parameters and maps, but it is crucial in defining the basic DNA of the steering feeling characteristics. The largely subjective nature of the steering feeling assessment means that EPS tuning consists primarily of subjective tests on running prototypes. On account of that, this paper presents an alternative test bench for steering feeling simulation and evaluation. It combines a static driving simulator with a physical EPS assisted steering rack. The end goal is to more accurately reproduce the tactile feedback to the driver by including a physical hardware in lieu of complicated and difficult to obtain software models.
Technical Paper

Design and Hardware in the Loop Testing of AEB Controllers

2022-03-29
2022-01-0099
Current ADAS systems can improve vehicle safety directly influencing its dynamics, reducing the impact of human error while driving. These functionalities have a high impact on the complexity of each unit installed on the car, potentially increasing the development time. In this work, a Hardware in the Loop testing bench and methodology for Autonomous Emergency Braking system is presented, aiming to enable a faster system development process. A commercial production brake by wire unit has been installed on a real-time driving simulator. The AEB functionality of the unit is activable in real-time during the simulation, by the means of a customizable control strategy. Two different AEB controllers have been implemented: the first one reproduces the unit stock functionality, while the second computes the requested deceleration using a PID control strategy.
Technical Paper

Multi-Contact Real-Time Tire Model Validation Using a Novel Hardware-in-the-Loop Simulator Apparatus

2024-04-09
2024-01-2275
Simulators are essential part of the development process of vehicles and their advanced functionalities. The combination of virtual simulator and Hardware-in-the-loop technology accelerates the integration and functional validation of ECUs and mechanical components. The aim of this research is to investigate the benefits that can arise from the coupling of a steering Hardware-in-the-loop simulator and an advanced multi-contact tire model, as opposed to the conventional single-contact tire model. On-track tests were executed to collect data necessary for tire modelling using an experimental vehicle equipped with wheel force transducer, to measure force and moments acting on tire contact patch. The steering wheel was instrumented with a torque sensor, while tie-rod axial forces were quantified using loadcells. The same test set has been replicated using the Hardware-in-the-loop simulator using both the single-contact and multi-contact tire model.
X