Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Quick Prototype Methodology for Low Offset Thermoplastic Pedestrian Energy Absorbers

2006-04-03
2006-01-1659
This paper describes a methodology to prototype and validate thermoplastic energy absorbers in a broad range of vehicle geometries. The objective of this prototype tool designed with quick prototype methodology is to achieve ready PC/PBT energy absorber designs for pedestrian testing. Generic vehicle models were used to finalize the energy absorber design features. The prototype tool was designed from optimized energy absorber designs that meet pedestrian performance in low packaging space, typically 45–60 mm. A set of prototype tools is being built to match different beam heights and packaging spaces. The tool has also the functionality of achieving different thickness and different design features using the latest manufacturing technologies. A full energy absorber can be built from individual lobes over the width of the car. The finalized design combined with ‘quick prototyping’ methodology was used to finalize the mold design, which can cater to a wide range of vehicle geometries.
Technical Paper

Improved Energy Absorber and Vehicle Design Strategies for Pedestrian Protection

2005-01-11
2005-01-1872
This paper presents the effect of finite element analysis (FEA) model improvements to better correlate predictive analyses to pedestrian protection lower leg impact tests. The FEA analysis model prediction is now within 10% of the tested values for tibia deceleration, knee bending angle and knee shear. By using this improved FEA model, new, more efficient energy absorber and vehicle front end design strategies can been developed. A numerical approach to optimizing vehicle front end structures is presented.
X