Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle

2017-09-04
2017-24-0014
The technique of liquid Water Injection (WI) at the intake port of downsized boosted SI engines is a promising solution to improve the knock resistance at high loads. In this work, an existing 1D engine model has been extended to improve its ability to simulate the effects of the water injection on the flame propagation speed and knock onset. The new features of the 1D model include an improved treatment of the heat subtracted by the water evaporation, a newly developed correlation for the laminar flame speed, explicitly considering the amount of water in the unburned mixture, and a more detailed kinetic mechanism to predict the auto-ignition characteristics of fuel/air/water mixture. The extended 1D model is validated against experimental data collected at different engine speeds and loads, including knock-limited operation, for a twin-cylinder turbocharged SI engine.
Technical Paper

Validation of 1D and 3D Analyses for Performance Prediction of an Automotive Silencer

2011-09-11
2011-24-0217
One dimensional (1D) and three dimensional (3D) simulations are widely used in technical acoustics to predict the behavior of duct system elements including fluid machines. In particular, referring to internal combustion engines, the numerical approaches can be used to estimate the Transmission Loss (TL) of mufflers, air boxes, catalytic converters, etc. TL is a parameter commonly used in almost any kind of acoustical filters, in order to assess the passive effects related to their sound attenuation. In this paper, a previous 1D-3D acoustical analysis of a commercial muffler, has been improved and experimentally validated. Features related to the manufacturing process, like the coupling of adjacent surfaces and the actual shape of components, have been noticed to heavily affect the muffler behavior.
X