Refine Your Search

Search Results

Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Comparison of Heavy Truck Engine Control Unit Hard Stop Data with Higher-Resolution On-Vehicle Data

2009-04-20
2009-01-0879
Engine control units (ECUs) on heavy trucks have been capable of storing “last stop” or “hard stop” data for some years. These data provide useful information to accident reconstruction personnel. In past studies, these data have been analyzed and compared to higher-resolution on-vehicle data for several heavy trucks and several makes of passenger cars. Previous published studies have been quite helpful in understanding the limitations and/or anomalies associated with these data. This study was designed and executed to add to the technical understanding of heavy truck event data recorders (EDR), specifically data associated with a modern Cummins power plant ECU. Emergency “full-treadle” stops were performed at many combinations of load-speed-surface coefficient conditions. In addition, brake-in-curve tests were performed on wet Jennite for various conditions of disablement of the braking system.
Journal Article

Application of Air Brake Performance Relationships in Accident Reconstruction and Their Correlation to Real Vehicle Performance

2012-04-16
2012-01-0609
This research paper builds onto the wealth of technical information that has been published in the past by engineers such as Flick, Radlinski, and Heusser. For this paper, the pushrod force versus chamber pressure data published by Heusser are supplemented with data taken from brake chamber types not reported on by Heusser in 1991. The utility of Heusser's braking force relationships is explored and discussed. Finally, a straightforward and robust method for calculating truck braking performance, based on the brake stroke measurements and published heavy truck braking test results, is introduced and compared to full-scale vehicle test data.
Journal Article

The Influence of Disablement of Various Brakes on the Dry Stopping Performance and Stability of a Tractor-Semitrailer

2009-04-20
2009-01-0099
This research was performed using a designed experiment to evaluate the loss of dry surface braking performance and stability that could be associated with the disablement of specific brake positions on a tractor-semitrailer. The experiment was intended to supplement and update previous research by Heusser, Radlinski, Flick, and others. It also sought to establish reasonable limits for engineering estimates on stopping performance degradation attributable to partial or complete brake failure of individual S-cam air brakes on a class 8 truck. Stopping tests were conducted from 30 mph and 60 mph, with the combination loaded to GCW (80,000 lb.), half-payload, and with the flatbed semitrailer unladen. Both tractor and semitrailer were equipped with antilock brakes. Along with stopping distance, brake pressures, longitudinal acceleration, road wheel speed, and steering wheel position and effort were also recorded.
Journal Article

Semitrailer Torsional Stiffness Data for Improved Modeling Fidelity

2011-09-13
2011-01-2163
Vehicle dynamics models employed in heavy truck simulation often treat the semitrailer as a torsionally rigid member, assuming zero deflection along its longitudinal axis as a moment is applied to its frame. Experimental testing, however, reveals that semitrailers do twist, sometimes enough to precipitate rollover when a rigid trailer may have remained upright. Improving the model by incorporating realistic trailer roll stiffness values can improve assessment of heavy truck dynamics, as well as an increased understanding of the effectiveness of stability control systems in limit handling maneuvers. Torsional stiffness measurements were conducted by the National Highway Traffic Safety Administration (NHTSA) for eight semitrailers of different types, including different length box vans, traditional and spread axle flat beds, and a tanker.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

Straight-Line Dry Tractor-Semitrailer Braking and Handling Comparison to HVE Computer SImulation

2010-10-05
2010-01-1921
The ability of a simulation model to accurately predict vehicle response is investigated in this paper. This study seeks to compare full-scale tractor-semitrailer straight-line braking test data to predicted response from a detailed heavy truck computer vehicle dynamics simulation model. The model, Simulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment. This computer program includes a vehicle dynamic model capable of simulating vehicle motion in 3-dimensional environments and includes Brake Designer and ABS Simulation Models. The results of several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio are presented.
Technical Paper

A New Passive Interface to Simulate On-Vehicle Systems for Direct-to-Module (DTM) Engine Control Module (ECM) Data Recovery

2010-10-05
2010-01-1994
Investigators of vehicular incidents often seek to recover data stored within on-board computer systems. For commercial vehicles, the primary source for this information is the engine control module (ECM). The data stored in these modules, not unlike passenger vehicles, varies widely among manufacturers, as do the hardware and software required to recover such data. Further, the options, and associated risks, involved with attempting to recover this data has a similarly wide variance relative to the engine manufacturer, incident related circumstances, and the tools currently available to perform such downloads. There are two primary paths available to obtain this data: (1) via the vehicle data bus (e.g. SAE J1939 or J1708 ) or (2) direct-to-module (DTM) connection. When using the DTM method, power is applied to an ECM, and the module measures the various engine control and monitoring components for validity.
Technical Paper

In-Depth Analysis of the Influence of High Torque Brakes on the Jackknife Stability of Heavy Trucks

2003-11-10
2003-01-3398
Published NHTSA rulemaking plans propose significant reduction in the maximum stopping distance for loaded Class-VIII commercial vehicles. To attain that goal, higher torque brakes, such as air disc brakes, will appear on prime movers long before the trailer market sees significant penetration. Electronic control of the brakes on prime movers should also be expected due to their ability to significantly shorten stopping distances. The influence upon jackknife stability of having higher performance brakes on the prime mover, while keeping traditional pneumatically controlled s-cam drum brakes on the trailer, is discussed in this paper. A hybrid vehicle dynamics model was applied to investigate the jackknife stability of tractor-semitrailer rigs under several combinations of load, speed, surface coefficient, and ABS functionality.
Technical Paper

New Model for Simulating the Dynamics of Pneumatic Heavy Truck Brakes with Integrated Anti-Lock Control

2003-03-03
2003-01-1322
This paper introduces a new nonlinear model for simulating the dynamics of pneumatic-over-mechanical commercial vehicle braking systems. The model employs an effective systems approach to accurately reproduce forcing functions experienced at the hubs of heavy commercial vehicles under braking. The model, which includes an on-off type ABS controller, was developed to accurately simulate the steer, drive, and trailer axle drum (or disc) brakes on modern heavy commercial vehicles. This model includes parameters for the pneumatic brake control and operating systems, a 4s/4m (four sensor, four modulator) ABS controller for the tractor, and a 2s/2m ABS controller for the trailer. The dynamics of the pneumatic control (treadle system) are also modeled. Finally, simulation results are compared to experimental data for a variety of conditions.
Technical Paper

Empirical Models for Commercial Vehicle Brake Torque from Experimental Data

2003-03-03
2003-01-1325
This paper introduces a new series of empirical mathematical models developed to characterize brake torque generation of pneumatically actuated Class-8 vehicle brakes. The brake torque models, presented as functions of brake chamber pressure and application speed, accurately simulate steer axle, drive axle, and trailer tandem brakes, as well as air disc brakes (ADB). The contemporary data that support this research were collected using an industry standard inertia-type brake dynamometer, routinely used for verification of FMVSS 121 commercial vehicle brake standards.
Technical Paper

The Effects of Foundation Brake Configuration on Class-8 Tractor Dry Stopping Performance

2004-10-26
2004-01-2701
This paper discusses dry stopping performance comparisons of various foundation brake systems on Class-8 truck tractors (having a GVWR greater than 33,000 lbs.). For these studies, four configurations of foundation brakes were fitted to two modern 6x4 conventional truck tractors without modification to the control, application, or ABS systems. Foundation brakes compared include standard S-cam drum brakes on all six positions, high-output S-cam drum and then air disc brakes on the steer axles, and air disc brakes on all six brake positions. Discussions include analyses of stopping distance from 60 mph (96.6 kph) for all test conditions. The truck tractors were tested in two weight configurations, LLVW (i.e., bobtail) and GVWR (50,000 lbs. total axle weight, using an unbraked control semitrailer).
Technical Paper

The Effects of Foundation Brake Configuration on Class-8 Tractor Wet Stopping Performance and Stability

2004-10-26
2004-01-2702
This paper discusses wet stopping performance and stability comparisons of various foundation brake systems on Class-8 truck tractors (having a GVWR greater than 33,000 lbs.). For these studies, four configurations of foundation brakes were fitted to two modern 6×4 conventional truck tractors without modification to the control, application, or ABS systems. The foundation brakes compared include standard S-cam drum brakes on all six positions, two hybrid configurations (high-output S-cam drum and then air disc brakes on the steer axles), and air disc brakes on all six brake positions. The truck tractors were tested in two weight configurations, LLVW and GVWR using an unbraked control semitrailer. Analytical analyses of wet brake-in-curve testing indicate that the hybrid brake systems (employing higher-torque brakes on the steer axle only) might degrade brake-incurve performance. This disadvantage appeared to exist for both load conditions.
Technical Paper

The Development of a Heavy Truck ABS Model

2005-04-11
2005-01-0413
This paper discusses the improvement of a heavy truck anti-lock brake system (ABS) model currently used by the National Highway Traffic Safety Administration (NHTSA) in conjunction with multibody vehicle dynamics software. Accurate modeling of this complex system is paramount in predicting real-world dynamics, and significant improvements in model accuracy are now possible due to recent access to ABS system data during on-track experimental testing. This paper focuses on improving an existing ABS model to accurately simulate braking under limit braking maneuvers on high and low-coefficient surfaces. To accomplish this, an ABS controller model with slip ratio and wheel acceleration thresholds was developed to handle these scenarios. The model was verified through testing of a Class VIII 6×4 straight truck. The Simulink brake system and ABS model both run simultaneously with TruckSim, with the initialization and results being acquired through Matlab.
Technical Paper

The Effect of Application Air Pressure on Brake Stroke Measurements from 70 to 125 psi

2015-09-29
2015-01-2833
Brake chamber construction allows for a finite stroke for pushrods during brake application. As such, the Federal Motor Carrier Safety Regulations (FMCSRs) mandate maximum allowable strokes for the various chamber types and sizing. Brake strokes are often measured during compliance inspections and post-accident investigations in order to assess vehicle braking performance and/or capability. A number of studies have been performed, and their results published, regarding the effect of brake stroke and function on braking force and heavy truck stopping performance [1] through [4]. All of the studies have relied on a brake supply pressure of 100 pounds per square inch (psi). When brake strokes are measured in the field, following the Commercial Vehicle Safety Alliance (CVSA) procedure, the application pressure is prescribed to be maintained between 90 and 100 psi.
Technical Paper

Braking of Commercial Vehicles Equipped with Air-Disc Brakes from High Speed - Effects on Stopping Distance

2005-04-11
2005-01-0397
Due to increased speed limits at the state level, NHTSA has pursued additional testing of heavy trucks at higher test maneuver entry speeds. Test results from three vehicles, a Class 7 school bus, a Class 8 truck tractor and a Class 8 straight-truck are presented here. Results are discussed for full treadle straight-ahead stops from 60, 70 and 75 mph. Each vehicle was tested with two different brake configurations. As expected, higher entry speeds resulted in increased stopping distances. Causes for increased stopping distances are briefly discussed. Comparisons show that vehicles in the hybrid configuration (air-disc brakes on steer axle and S-cam brakes on drive axle(s)) had superior stopping performance to the vehicles equipped with traditional S-cam brakes. The vehicles in the hybrid configuration were less susceptible to increased stopping distances from higher entry speeds.
Technical Paper

Motorcycle Lean Angle Variation around a Constant Radius Curve at Differing Speeds and Travel Paths with an Evaluation of Data Measurement Systems

2019-04-02
2019-01-0437
Recent studies evaluating motorcycle lean angle have compared theoretical lean angle equations with real-world-tested motorcycle lean angles. These studies have considered several factors affecting lean angle, including the simplified assumptions made when calculating theoretical lean angles, the speed of the motorcycle around a curve, and the geometry of the roadway/curve. This study further evaluates motorcycle lean angle as a function of speed, but primarily focuses on the effects of different travel paths selected by the rider around the same constant radius curve. The testing incorporates nine passes around the same curve traveling three different paths at three different speeds. The real-world-tested lean angles were compared to the predicted calculated lean angles for each tested travel path and speed.
Technical Paper

Analysis of Motorcycle Braking Performance and Associated Braking Marks

2012-04-16
2012-01-0610
This paper presents and analyzes braking test data and braking marks for a sport, sport-touring, and cruiser type motorcycle. The best-effort braking tests were performed using three motorcycles, three riders, and three initial speeds. All tests were performed on dry asphalt, with the exception of one set of runs for a sport touring motorcycle on wet asphalt. Three braking strategies were used; front-brake-only, rear-brake-only, and front-and-rear brakes used together. From these data, engineers can evaluate the following effects on braking performance: rider, speed, pavement condition, braking strategy, and motorcycle type. This paper should also serve to assist the vehicle accident reconstructionist in complementing the existing data on motorcycle braking performance.
Technical Paper

Motorcycle Accelerations while Successfully Traversing Roadway Irregularities and Traffic Calming Devices (Speed Bumps) at Small Lean Angles

2019-04-02
2019-01-0434
There have been limited empirical studies regarding the dynamics of a motorcycle and rider as a motorcycle traverses a roadway irregularity such as a pothole or depression, or a traffic calming device (TCD) such as a speed bump. This study seeks to establish qualitative analysis of the success of motorcycles traversing various roadway irregularities/TCDs as well as quantitatively analyzing accelerations to the motorcycle at varying speeds and lean angles. Further analysis is conducted comparing the accelerations experienced in scenarios where the suspension of the motorcycle experiences extension followed by compression, as is the case when encountering a pothole or depression, as well as scenarios where the suspension of the motorcycle experiences compression followed by extension, as is the case when encountering a TCD.
Technical Paper

Tractor-Semitrailer Stability Following a Steer Axle Tire Blowout at Speed and Comparison to Computer Simulation Models

2013-04-08
2013-01-0795
This paper documents the vehicle response of a tractor-semitrailer following a sudden air loss (Blowout) in a steer axle tire while traveling at highway speeds. The study seeks to compare full-scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models. Full-scale testing of a tractor-semitrailer experiencing a sudden failure of a steer axle tire was conducted. Vehicle handling parameters were recorded by on-board computers leading up to and immediately following the sudden air loss. Inertial parameters (roll, yaw, pitch, and accelerations) were measured and recorded for the tractor and semitrailer, along with lateral and longitudinal speeds. Steering wheel angle was also recorded. These data are presented and also compared to the results of computer simulation models. The first simulation model, SImulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment.
X