Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Technical Paper

Setup of a 1D Model for Simulating Dynamic Behaviour of External Gear Pumps

2007-10-30
2007-01-4228
External gear pumps are widely used in many different applications because of their relatively low costs and high performances, especially in terms of volumetric and mechanical efficiency. The main weaknesses of external gear pumps can be summarized as follows: 1 Sudden increase or decrease of pressure inside volumes between teeth, which could lead respectively to noise emissions and to cavitation onset; 2 Necessity of limiting power losses and increasing volumetric efficiency, obtainable by reducing leakage flows between components; 3 Need of maintaining an ad-hoc minimum lubrication film thickness. In recent years many efforts, in terms of mathematical models and experimental tests, were done in order to limit energy losses and noise emissions. With the aim of deeply studying dynamic behaviour of external gear pumps and addressing their design, a 1D model was developed by means AMESim® code.
Technical Paper

Advanced Modelling of a New Diesel Fast Solenoid Injector and Comparison with Experiments

2004-03-08
2004-01-0019
Upcoming Euro 4 and Euro 5 emission standards are increasing efforts on injection system developments in order to improve mixture quality and combustion efficiency. The target features of advanced injection systems are related to their capability of operating multiple injection with a precise control of the amount of injected fuel, low cycle-by-cycle variability and life drift, within flexible strategies. In order to accomplish this task, injector performance must be optimised by acting on: optimisation of electronic, driving circuit, detailed investigation of different nozzle hole diameter configurations, assessment of the influence of manufacturing errors on hole diameter and inlet rounding on injector performance. The paper will focus on the use of an integrated lump-1D/3D methodology for the design of advanced new fast solenoid Common Rail (C.R.) injector for high speed diesel engines. A lump-model built up in AMESim® environment was used to address the injector design.
Technical Paper

Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics

2002-03-04
2002-01-0213
Managing the injection rate profile is a powerful tool to control engine performance and emission levels. In particular, Common Rail (C.R.) injection systems allow an almost completely flexible fuel injection event in DI-diesel engines by permitting a free mapping of the start of injection, injection pressure, rate of injection and, in the near future, multiple injections. This research deals with the development of a network-based numerical tool for understanding operating condition limits of the Common Rail injector. The models simulate the electro-fluid-mechanical behavior of the injector accounting for cavitation in the nozzle holes. Validation against experiments has been performed. The model has been used to provide insight into the operating conditions of the injector and in order to highlight the application to injection system design.
Technical Paper

A Numerical and Experimental Study Towards Possible Improvements of Common Rail Injectors

2002-03-04
2002-01-0500
The aim of this work is to propose modifications to the managing of the 1st generation Common Rail injectors in order to reduce actuation time towards multiple injection strategies. The current Common Rail injector driven by 1st ECU generation is capable of operating under stable conditions with a minimum dwell between two consecutive injections of 1.8 ms. This limits the possibility in using proper and efficient injection strategies for emission control purposes. A previous numerical study, performed by the electro-fluid-mechanical model built up by Matlab-Simulink environment, highlighted different area where injector may be improved with particular emphasis on electronic driving circuit and components design. Experiments carried out at injector Bosch test-bench showed that a proper control of the solenoid valve allowed reducing drastically the standard deviation during the pilot pulses.
Technical Paper

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution

2012-10-23
2012-32-0096
In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
Technical Paper

Assessment of the Influence of Intake Duct Geometrical Parameters on the Tumble Motion Generation in a Small Gasoline Engine

2012-10-23
2012-32-0095
During the last years the deep re-examination of the engine design for lowering engine emissions involved two-wheel vehicles too. The IC engine overall efficiency plays a fundamental role in determining final raw emissions. From this point of view, the optimization of the in-cylinder flow organization is mandatory. In detail, in SI engines the generation of a coherent tumble vortex having dimensions comparable to the engine stroke could be of primary importance to extend the engines' ignition limits toward the field of the dilute/lean mixtures. For motorbike and motor scooter applications, the optimization of the tumble generation is considered an effective way to improve the combustion system efficiency and to lower emissions, considering also that the two-wheels layout represents an obstacle in adopting the advanced post-treatment concepts designed for automotive applications.
Technical Paper

Numerical Investigation of Critical Issues in Multiple-Injection Strategy Operated by a New C.R. Fast-Actuation Solenoid Injector

2005-04-11
2005-01-1236
The paper investigates the variation of the mass of the fuel injected with respect to nominal conditions in Common Rail injection systems for Diesel automotive applications. Two possible operating conditions have been considered: the consecutive injection of two injectors and the multiple shots of the same injector in the same engine cycle. An integrated experimental and numerical methodology has been used. Several experimental information were available in terms of instantaneous rail and pipe pressure and mass flow rate at different conditions. The 1D numerical model of the whole injection system was useful in addressing the questions remained unresolved in the post-experiments analysis. The experimental results show that injector performances are more related to pressure oscillations in injector connecting pipe rather than inside the common rail.
Technical Paper

Evaluation of Water and EGR Effects on Combustion Characteristics of GDI Engines Using a Chemical Kinetics Approach

2019-09-09
2019-24-0019
The modern spark ignition engines, due to the introduced strategies for limiting the consumption without reducing the power, are sensitive to both the detonation and the increase of the inlet turbine temperature. In order to reduce the risk of detonation, the use of dilution with the products of combustion (EGR) is an established practice that has recently improved with the use of water vapor obtained via direct or indirect injection. The application and optimization of these strategies cannot ignore the knowledge of physical quantities characterizing the combustion such as the laminar flame speed and the ignition delay, both are intrinsic property of the fuel and are function of the mixture composition (mixture fraction and dilution) and of its thermodynamic conditions. The experimental measurements of the laminar flame speed and the ignition delay available in literature, rarely report the effects of dilution by EGR or water vapor.
Technical Paper

PWI and DWI Systems in Modern GDI Engines: Optimization and Comparison Part II: Reacting Flow Analysis

2021-04-06
2021-01-0454
The water injection is one of the recognized technologies capable of helping the future engines to work at full load conditions with stoichiometric mixture. In the present work, a methodology for the CFD simulation of reacting flow conditions using AVL Fire code v. 2020 is applied for the assessment of the water injection effect on modern GDI engines. Both Port Water Injection and Direct Water Injection have been tested for the same baseline engine configuration under reacting flow conditions. The ECFM-3Z model adopted for combustion and knock simulations have been performed by adopting correlations for laminar flame speed, flame thickness and ignition delay times prediction, to consider the modified chemical behavior of the mixture due to the added water vapor.
Technical Paper

Water Injection Applicability to Gasoline Engines: Thermodynamic Analysis

2019-04-02
2019-01-0266
The vehicle WLTP and RDE homologation test cycles are pushing the engine technology toward the implementation of different solutions aimed to the exhaust gases emission reduction. The tightening of the policy on the Auxiliary Emission Strategy (A.E.S.), including those for the engine component protection, faces the Spark Ignited (S.I.) engines with the need to replace the fuel enrichment as a means to cool down both unburnt mixture and exhaust gases to accomplish with the inlet temperature turbine (TiT) limit. Among the whole technology solutions conceived to make SI engine operating at lambda 1.0 on the whole operation map, the water injection is one of the valuable candidates. Despite the fact that the water injection has been exploited in the past, the renewed interest in it requires a deep investigation in order to outcome its potential as well as its limits.
Technical Paper

PWI and DWI Systems in Modern GDI Engines: Optimization and Comparison Part I: Non-Reacting Flow Analysis

2021-04-06
2021-01-0461
Currently engine designers are focusing their attention on the improvement of the engine efficiency, led by the reduction of in-cylinder temperature and the adoption of stoichiometric combustion in the full range of the engine operation map. The most demanding points are those close to full power: water injection is thought to help in fulfilling this goal, thus contributing towards more efficient engines. To perform a rapid optimization of the main parameters involved by the water injection process, it is necessary to have reliable CFD methodologies capable of capturing the most important phenomena. In the present work, a methodological approach based on the CFD simulation of non-reacting flows of S.I. GDI turbocharged engines under water injection operation is pursued using AVL Fire code v. 2020.
Technical Paper

Comparison of Modern Powertrains Using an Energy Model Based on Well-to-Miles Analysis

2023-08-28
2023-24-0005
The need to reduce carbon dioxide emissions from motor vehicles pushes the European Union towards drastic choices on future mobility. Despite this, the engines of the “future” have not yet been defined: the choice of engine type will undoubtedly depend on the type of application (journey length, availability of recharging/refueling facilities), practical availability of alternative fuels, and electricity to recharge the batteries. The electrification of vehicles (passenger and transportation cars) may be unsuitable for several aspects: the gravimetric energy density could be too low if the vehicle has to be lightweight, must achieve a high degree of autonomy, or needs a very short refueling time.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
X