Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Simulation Model for Low-Speed Bumper-to-Bumper Crashes

2010-04-12
2010-01-0051
The purpose of this study was to develop a numerical analytical model of collinear low-speed bumper-to-bumper crashes and use the model to perform parametric studies of low-speed crashes and to estimate the severity of low-speed crashes that have already occurred. The model treats the car body as a rigid structure and the bumper as a deformable structure attached to the vehicle. The theory used in the model is based on Newton's Laws. The model uses an Impact Force-Deformation (IF-D) function to determine the impact force for a given amount of crush. The IF-D function used in the simulation of a crash that has already occurred can be theoretical or based on the measured force-deflection characteristics of the bumpers of the vehicles that were involved in the actual crash. The restitution of the bumpers is accounted for in a simulated crash through the rebound characteristics of the bumper system in the IF-D function.
Technical Paper

Methodology for Measuring Tibial and Fibular Loads in a Cadaver

2002-03-04
2002-01-0682
Crash test dummies rely on biomechanical data from cadaver studies to biofidelically reproduce loading and predict injury. Unfortunately, it is difficult to obtain equivalent measurements of leg loading in a dummy and a cadaver, particularly for bending moments. A methodology is presented here to implant load cells in the tibia and fibula while minimally altering the functional anatomy of the two bones. The location and orientation of the load cells can be measured in all six degrees of freedom from post-test radiographs. Equations are given to transform tibial and fibular load cell measurements from a cadaver or dummy to a common leg coordinate frame so that test data can be meaningfully compared.
Journal Article

Characterization of Force Deflection Properties for Vehicular Bumper-to-Bumper Interactions

2014-04-01
2014-01-1991
This is the complete manuscript and replacement for SAE paper 2014-01-0482, which has been retracted due to incomplete content. This paper reports on 76 quasi-static tests conducted to investigate the behavior of road vehicle bumper systems. The tests are a quasi-static replication of real world low speed collisions. The tests represented front to rear impacts between various vehicles. Force and deflection were captured in order to quantify the stiffness characteristics of the bumper-to-bumper system. A specialized test apparatus was constructed to position and load bumper systems into each other. The purpose was to replicate or exceed damage that occurred in actual collisions. The fixture is capable of positioning the bumpers in various orientations and generates forces up to 50 kips. Various bumper-to-bumper alignments were tested including full overlap, lateral offset, and override/underride configurations.
X