Refine Your Search

Search Results

Viewing 1 to 20 of 20
Journal Article

Butanol-Diesel Blend Spray Combustion Investigation by UV-Visible Flame Emission in a Prototype Single Cylinder Compression Ignition Engine

2015-09-06
2015-24-2435
The paper reports the results of an experimental investigation carried out in a prototype optically accessible compression ignition engine fuelled with different blends of commercial diesel and n-butanol. Thermodynamic analysis and exhaust gas measurements were supported by optical investigations performed through a wide optical access to the combustion chamber. UV-visible digital imaging and 2D chemiluminescence were applied to characterize the combustion process in terms of spatial and temporal occurrence of auto-ignition, flame propagation, soot and OH evolution. The paper illustrates the results of the spray combustion for diesel and n-butanol-diesel blends at 20% and 40% volume fraction, exploring a single and double injection strategy (pilot+main) from a common rail multi-jet injection system. Tests were performed setting a pilot+main strategy with a fixed dwell time and different starts of injection.
Journal Article

Optical Diagnostics of the Pollutant Formation in a CI Engine Operating with Diesel Fuel Blends

2011-06-09
2011-37-0003
To meet the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. Oxygenated fuels have showed a tendency to decrease internal combustion engine emissions. In the same time, advanced fuel injection modes can promote a further reduction of the pollutants at the exhaust without penalty for the combustion efficiency. One of the more interesting solutions is provided by the premixed low temperature combustion (LTC) mechanism jointly to lower-cetane, higher-volatility fuels. In this paper, to understand the role played by these factors on soot formation, cycle resolved visualization, UV-visible optical imaging and visible chemiluminescence were applied in an optically accessed high swirl multi-jets compression ignition engine. Combustion tests were carried out using three fuels: commercial diesel, a blend of 80% diesel with 20% gasoline (G20) and a blend of 80% diesel with 20% n-butanol (BU20).
Technical Paper

Extinction and Chemiluminescence Measurements in CR DI Diesel Engine Operating in HCCI Mode

2007-04-16
2007-01-0192
Homogeneous Charge Compression Ignition (HCCI) combustion was applied to a transparent diesel engine equipped with high pressure Common Rail (CR) injection system. By means of CR system the quantity of fuel was split into five injections per cycle. Combined measurements, based on digital imaging and spectroscopic techniques, were applied to follow the evolution of HCCI combustion process with high temporal and spatial resolution. Digital imaging allowed to analyse injection and combustion phases. Broadband ultraviolet - visible extinction spectroscopy (BUVES) and flame emission measurements were carried out to evaluate the presence of radicals and species such as HCO, OH, CH, and CO. In particular, BUVES measurements were performed to follow fuel oxidation, and pollutant formation and oxidation. During injection and cool combustion, bands of aromatic compounds and alkyl peroxides, indicating fuel decomposition, and hydrogen peroxides were detected.
Technical Paper

Extinction and Chemiluminescence Measurements of HCCI Mode in Diesel Engine Operating with Late Injection

2008-04-14
2008-01-0027
Nowadays HCCI combustion process is revealing the most useful technique for reducing pollutant emission from internal combustion engines. In the present paper, HCCI combustion was realized by means of single late injection at high pressure and heavy EGR, up to 50%. A transparent Direct Injection (DI) diesel engine equipped with high pressure Common Rail (CR) injection system was used. The engine was fed with commercial diesel fuel and ran in continuous mode. Digital imaging and spectroscopic techniques, with high temporal and spatial resolution, were applied to study the low temperature combustion process. Injection and combustion phases were analysed by digital imaging. Mixing process, autoignition and pollutants formation were investigated by Broadband Ultraviolet - Visible Extinction Spectroscopy (BUVES) and flame emission measurements. Radicals and species such as OH, CH and CO were detected in the combustion chamber.
Technical Paper

Nanometric Particle Formation in Optically Accessible Engine Diesel

2001-03-05
2001-01-1258
In the last years, there has been an increasing concern on the emission of ultrafine particles in the atmosphere. A detailed study of formation and oxidation of these particles in the environment of the diesel cylinder presents many experimental difficulties due to the high temperatures, pressures and extremely reactive intermediate species. In this paper, in order to follow the different phases of diesel combustion process, high temporal and spatial resolution optical techniques were applied in the optically accessible chamber of diesel engine, at 2000 rpm and A/F=80:1 and 60:1. Simultaneous extinction, scattering and flame chemiluminescence measurements from UV to visible were carried out, in order to study the diesel combustion process from the droplet ignition to the formation of soot, through the growth of its precursors.
Technical Paper

Spectral Analysis of Combustion Process of Common Rail Diesel Engine

2002-05-06
2002-01-1634
Polychromatic extinction and chemiluminescence techniques, from ultraviolet to visible, were applied in an optical diesel engine, in order to analyze the temporal and spatial evolution of a high pressure fuel jet interacting with a swirling air motion. A fully flexible Common Rail fuel injection system equipped with a single hole nozzle was used. The experiments were performed at fixed engine speed and air/fuel ratio for three injection strategies. The first one consisted of a main injection to compare with those operating at low pressure injection. The other ones were based on a pilot and main injections, typical of current direct injection diesel engines, with different dwell time. A detailed investigation of the mixture formation process inside the combustion chamber during the ignition delay time was performed. The liquid and vapor fuel distribution in the combustion chamber was obtained analyzing the polychromatic extinction spectra.
Technical Paper

Multidimensional Modelling and Spectroscopic Analysis of the Soot Formation Process in a Diesel Engine

2002-07-09
2002-01-2161
Multidimensional simulation of the soot formation process in a diesel engine is realised exploiting quantitative measurements of the soot volume fraction and diameter obtained by optical techniques. Broadband extinction and scattering measurements are performed on an optically accessible 4-stroke engine where a forced air motion allows a strong prevalence of the premixed stage of combustion with respect to the non-premixed one. Two semi-empirical models for soot formation are tested in the numerical simulation, which is performed using a customized version of the KIVA-3 code. The need of furnishing coherent values of the soot particles density and mean diameter to the one of the two models requiring this kind of information, is highlighted and demonstrated to be crucial in avoiding over-prediction of the soot concentration.
Technical Paper

Absolute NO and OH Concentrations During Diesel Combustion Process by Multiwavelength Absorption Spectroscopy

2002-03-04
2002-01-0892
Conventional methods to measure gas concentrations and, in particular, NO are typically based on sampling by valve, sample treatment and subsequent analysis. These methods suffer low spatial and temporal resolution. The introduction of high energy lasers in combination with fast detection systems allowed to detect the NO distribution inside optically accessible Diesel engines. In this paper, a high spatial and temporal resolution in-situ technique based on ultraviolet - visible absorption spectroscopy is proposed. The characterization of the combustion process by the detection of gaseous compounds from the start of combustion until the exhaust phase was performed. In particular, this technique allows the simultaneous detection of NO and OH absolute concentrations inside an optically accessible Diesel combustion chamber.
Technical Paper

Simultaneous Detection of NOx and Particulate in Exhaust of a CR Diesel Engine by UV-Visible Spectroscopy

2003-03-03
2003-01-0786
Non-intrusive diagnostic techniques based on broadband (190-550 nm) extinction and scattering spectroscopy were applied to undiluted exhaust Common Rail (CR) diesel engine. The influence of engine speed and load on soot mass concentration, size distribution of emitted particles and NOx concentration was analysed. NOx concentration was evaluated by “in situ” ultraviolet-visible absorption measurements and compared with those obtained by conventional analyser. The extinction and scattering spectra were compared with those evaluated by the Lorenz-Mie model for spherical particles in order to retrieve the size, the number concentration of the emitted particles and particulate mass.
Technical Paper

In-Cylinder Combustion Analysis by Flame Emission Spectroscopy of Transparent CR Diesel Engine

2003-03-03
2003-01-1112
Spectroscopic measurement and high speed visualization were used in single cylinder, four-stroke DI diesel engine, optically accessible. It was equipped with a four valves head and fully flexible electronic controlled ‘Common Rail’ injection system. The effect of pilot and main injection on combustion process was evaluated. Mixing formation, autoignition and soot formation process were analyzed by broadband ultraviolet-visible flame emission spectroscopy and high-speed digital imaging. The autoignition phase occurred near the tip of the jet and was characterized by strong presence of OH radicals for both investigated conditions The presence of C2 and OH radicals strongly characterized CR diesel combustion process during soot formation and evolution. In particular, high presence of OH concentration for the whole process from the autoignition to the soot formation and successive phases contributes to lower soot levels.
Technical Paper

Soot Formation Analysis by Multiwavelength Spectroscopy in an External Chamber Diesel Engine Equipped with a CR Injection System

2003-03-03
2003-01-1111
Diesel combustion process was studied and characterized by digital imaging and ultraviolet-visible flame emission, extinction and scattering spectroscopy. Optical measurements were applied to a transparent diesel engine, realized by modifying a single cylinder, air-cooled, 4-stroke diesel engine by means of an external combustion chamber on the top of the engine, connected to the main chamber by a tangential passage. Diesel engine was equipped with a fully flexible electronic controlled ‘Common Rail’ injection system. Measurements were performed at 1000 rpm engine speed for two typical injection strategies. The first one consisted of a main injection in order to compare the results with those ones obtained by conventional injection system operating at low pressure. The other one was based on a pilot and main injection that is typical of current direct injection diesel engines.
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Technical Paper

Optical Investigation of Premixed Low-Temperature Combustion of Lighter Fuel Blends in Compression Ignition Engines

2011-09-11
2011-24-0045
Optical imaging and UV-visible detection of in-cylinder combustion phenomena were made in a single cylinder optically accessed high swirl multi-jets compression ignition engine operating with two different fuels and two EGR levels. A commercial diesel fuel and a lighter fuel blend of diesel (80%) and gasoline (20%), named G20, were tested for two injection pressures (70 and 140 MPa) and injection timings in the range 11 CAD BTDC to 5 CAD ATDC. The blend G20 has a lower cetane number, is more volatile and more resistant to the auto-ignition than diesel yielding an effect on the ignition delay and on the combustion performance. Instantaneous fuel injection rate, in-cylinder combustion pressure, NOx and smoke engine out emissions were measured. Taking into account the particular configuration of the engine, the efficiency was estimated by determining the area under the working engine cycle.
Technical Paper

UV-Visible Imaging and Natural Emission Spectroscopy of Premixed Combustion in High Swirl Multi-Jets Compression Ignition Engine Fuelled with Diesel-Gasoline Blend

2012-09-10
2012-01-1723
One promising approach to reduce pollutants from compression ignition engines is the Partially-Premixed- Combustion in which engine out emissions can be reduced by promoting mixing of fuel and air prior to auto-ignition. A great interest for a premixed combustion regime is the investigation on fuels with different reactivity by blending diesel with lower cetane number and higher volatility fuels. In fact, fuels more resistant to auto-ignition give longer ignition delay that may enhance the fuel/air mixing prior to combustion. During the ignition delay period, the fuel spray atomizes into small droplets, vaporizes and mixes with air. As the piston moves towards TDC, as soon as the mixture temperature reaches the ignition point, instantaneously some pre-mixed amount of fuel and air ignites. The balance of fuel that does not burn in premixed combustion is consumed in the rate-controlled combustion phase, also known as diffusion combustion.
Technical Paper

Multi-Wavelength Spectroscopic Investigations of the Post-Injection Strategy Effect on the Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Fuelled with B5 and B30

2013-10-14
2013-01-2519
Optical diagnostic was applied to undiluted engine exhaust to supply a low cost and real time evaluation of the oil dilution tendency of selected fuels. Specifically, UV-visible-near IR extinction spectroscopy was applied in the exhaust line of a Euro 5 turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system. The engine was fuelled with commercial B5 fuel and a B30 v/v blend of RME and ultra low sulfur diesel. The proposed experimental methodology allowed to identify the contribution to the multi-wavelength extinction of soot, fuel vapor, hydrocarbons and nitrogen oxide. Further, the evolution of each species for different post-injection interval settings was followed. On-line optical results were correlated with off-line liquid fuel absorption values. Moreover, spectroscopic measurements were linked to in-cylinder pressure related data and with HC and smoke exhaust emissions.
Technical Paper

Spectroscopic Investigation of Post-Injection Strategy Impact on Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Diesel/Butanol and Gasoline Blends

2013-09-08
2013-24-0066
In this paper, a high temporal resolution optical technique, based on the multi-wavelength UV-visible-near IR extinction spectroscopy, was applied at the exhaust of an automotive diesel engine to investigate the post-injection strategy impact on the fuel vapor. Experimental investigations were carried out using three fuels: commercial diesel (B5), a blend of 80% diesel with 20% by vol. of gasoline (G20) and a blend of 80% diesel with 20% by vol. of n-butanol (BU20). Experiments were performed at the engine speed of 2500rpm and 0.8MPa of brake mean effective pressure exploring two post-injection timings and two EGR rates. The optical diagnostic allowed evaluating, during the post-injection activation, the evolution of the fuel vapor in the engine exhaust line. The investigation was focused on the impact of post-injection strategy and fuel properties on the aptitude to produce hydrocarbon rich gaseous exhaust for the regeneration of diesel particulate trap (DPF).
Technical Paper

Thermo-Fluid Dynamic Modeling and Experimental Investigation of a Turbocharged Common Rail DI Diesel Engine

2005-04-11
2005-01-0689
The paper describes the results of a parallel 1D thermo-fluid dynamic simulation and experimental investigation of a DI turbocharged Diesel engine. The attention has been focused on the overall engine performances (air flow, torque, power, fuel consumption) as well as on the emissions (NO and particulate) along the after-treatment system, which presents a particulate filter. The 1D research code GASDYN for the simulation of the whole engine system has been enhanced by the introduction of a multi-zone quasi-dimensional combustion model for direct injection Diesel engines. The effect of multiple injections is taken into account (pilot and main injection). The prediction of NO and soot has been carried out respectively by means of a super-extended Zeldovich mechanism and by the Hiroyasu kinetic approach.
Technical Paper

Optical Investigation of Post-injection Strategy Impact on the Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Biodiesel Blends

2013-04-08
2013-01-1127
Multi-wavelength ultraviolet-visible extinction spectroscopy was applied to follow the evolution of fuel vapor injected by post-injection along the exhaust line of a common-rail turbocharged direct-injection diesel engine at moderate speed and load. The exhaust line was specifically designed and customized to allow the insertion of the optical access upstream of the Diesel Oxidation Catalyst. During the experimental campaign, the engine was fuelled with commercial B5 fuel and a B30 v/v blend of RME and ultra low sulfur diesel, monitoring emissions upstream of the catalyst and exhaust gas temperature across the catalyst. Tests were performed at different engine operating conditions with particular attention to moderate speed and load.
Technical Paper

Nanoparticles at Internal Combustion Engines Exhaust: Effect on Urban Area

2006-09-14
2006-01-3006
The role of Spark Ignition (SI) and Diesel engines as nanoparticles sources in urban area was investigated. Detection, sizing and counting of particles were realized at the exhaust of a Port Fuel Injection Spark Ignition (PFI SI) engine equipped with a Three-Way Catalyst (TWC) and a Unijet Common Rail (CR) Diesel engine equipped first with an Oxidation Catalyst (OC) and then with a Catalyzed Diesel Particulate Filter (CDPF). Engine operating conditions in high road traffic were considered. Electrical Low Pressure Impactor (ELPI) was used as real-time measurements device for particle size distribution in the range from 7 nm up to 10000 nm. Broadband UV-Visible Extinction and Scattering Spectroscopy (BUVESS) allowed investigating the chemical and physical nature of emitted particles. It was observed that the major contribution to particulate mass is due to Diesel engine equipped with the OC, the other engines contribute only in terms of number concentration.
Technical Paper

Characterization of Nanoparticles at the Exhaust of a Common Rail Diesel Engine by Optical Techniques and Conventional Method.

2005-05-11
2005-01-2155
Broadband ultraviolet-visible extinction and scattering spectroscopy (BUVESS) and Laser Induced Incandescence (LII) were used at the undiluted exhaust of a Common Rail diesel engine for detection, sizing and counting nanoparticles. BUVESS and LII are powerful in situ and non intrusive techniques. BUVESS is based on multiwavelength extinction and scattering spectroscopy. It overcomes the intrinsic limitations of single wavelength techniques because it takes advantage of data at several wavelengths to retrieve primary particle size distribution with better accuracy. LII measures volume concentration and mean size of primary particles with a large measurement range, not limited by aggregate size. The optical results were compared with those obtained by conventional methods like opacimeter for mass concentration and Electrical Low Pressure Impactor (ELPI) for sizing.
X