Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Experimental Evaluation of an Advanced Ignition System for GDI Engines

2015-09-06
2015-24-2520
A plasma ignition system was tested in a GDI engine with the target of combustion efficiency improvement without modifying engine configuration. The plasma was generated by spark discharge and successively sustained to enhance its duration up to 4 ms. The innovative ignition system was tested in an optically accessible single-cylinder DISI engine to investigate the effects of plasma on kernel stability and flame front propagation under low loads and lean mixture (λ≅1.3). The engine was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). All experiments were performed at 2000 rpm and 100 bar injection pressure. UV-visible 2D chemiluminescence was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. A bandpass filter allowed selecting luminous signal due to OH radicals.
Technical Paper

Simultaneous Detection of NOx and Particulate in Exhaust of a CR Diesel Engine by UV-Visible Spectroscopy

2003-03-03
2003-01-0786
Non-intrusive diagnostic techniques based on broadband (190-550 nm) extinction and scattering spectroscopy were applied to undiluted exhaust Common Rail (CR) diesel engine. The influence of engine speed and load on soot mass concentration, size distribution of emitted particles and NOx concentration was analysed. NOx concentration was evaluated by “in situ” ultraviolet-visible absorption measurements and compared with those obtained by conventional analyser. The extinction and scattering spectra were compared with those evaluated by the Lorenz-Mie model for spherical particles in order to retrieve the size, the number concentration of the emitted particles and particulate mass.
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Technical Paper

Optical Investigation of Premixed Low-Temperature Combustion of Lighter Fuel Blends in Compression Ignition Engines

2011-09-11
2011-24-0045
Optical imaging and UV-visible detection of in-cylinder combustion phenomena were made in a single cylinder optically accessed high swirl multi-jets compression ignition engine operating with two different fuels and two EGR levels. A commercial diesel fuel and a lighter fuel blend of diesel (80%) and gasoline (20%), named G20, were tested for two injection pressures (70 and 140 MPa) and injection timings in the range 11 CAD BTDC to 5 CAD ATDC. The blend G20 has a lower cetane number, is more volatile and more resistant to the auto-ignition than diesel yielding an effect on the ignition delay and on the combustion performance. Instantaneous fuel injection rate, in-cylinder combustion pressure, NOx and smoke engine out emissions were measured. Taking into account the particular configuration of the engine, the efficiency was estimated by determining the area under the working engine cycle.
Technical Paper

Multi-Wavelength Spectroscopic Investigations of the Post-Injection Strategy Effect on the Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Fuelled with B5 and B30

2013-10-14
2013-01-2519
Optical diagnostic was applied to undiluted engine exhaust to supply a low cost and real time evaluation of the oil dilution tendency of selected fuels. Specifically, UV-visible-near IR extinction spectroscopy was applied in the exhaust line of a Euro 5 turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system. The engine was fuelled with commercial B5 fuel and a B30 v/v blend of RME and ultra low sulfur diesel. The proposed experimental methodology allowed to identify the contribution to the multi-wavelength extinction of soot, fuel vapor, hydrocarbons and nitrogen oxide. Further, the evolution of each species for different post-injection interval settings was followed. On-line optical results were correlated with off-line liquid fuel absorption values. Moreover, spectroscopic measurements were linked to in-cylinder pressure related data and with HC and smoke exhaust emissions.
X