Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Correlation between Simulated Volume Fraction Burned Using a Quasi-Dimensional Model and Flame Area Measured in an Optically Accessible SI Engine

2017-03-28
2017-01-0545
Multi-fuel operation is one of the main topics of investigative research in the field of internal combustion engines. Spark ignition (SI) power units are relatively easily adaptable to alternative liquid-as well as gaseous-fuels, with mixture preparation being the main modification required. Numerical simulations are used on an ever wider scale in engine research in order to reduce costs associated with experimental investigations. In this sense, quasi-dimensional models provide acceptable accuracy with reduced computational efforts. Within this context, the present study puts under scrutiny the assumption of spherical flame propagation and how calibration of a two-zone combustion simulation is affected when changing fuel type. A quasi-dimensional model was calibrated based on measured in-cylinder pressure, and numerical results related to the two-zone volumes were compared to recorded flame imaging.
Technical Paper

Effect of Hydrogen Enrichment on Flame Morphology and Combustion Evolution in a SI Engine Under Lean Burn Conditions

2018-04-03
2018-01-1144
Uncertainty of fuel supply in the energy sector and environmental protection concerns have motivated studies on clean and renewable alternative fuels for vehicles as well as stationary applications. Among all fuel candidates, hydrogen is generally believed to be a promising alternative, with significant potential for a wide range of operating conditions. In this study, a comparison was carried out between CH4, two CH4/H2 blends and two mixtures of CO and H2, the last one taken as a reference composition representative of syngas. It is imperative to fully understand and characterize how these fuels behave in various conditions. In particular, a deep knowledge of how hydrogen concentrations affect the combustion process is necessary, given that it represents a fundamental issue for the optimization of internal combustion engines. To this aim, flame morphology and combustion stability were studied in a SI engine under lean burn conditions.
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of Port- vs Direct-Injection and Boosting Requirements

2023-08-28
2023-24-0074
Hydrogen is an energy vector with low environmental impact and will play a significant role in the future of transportation. Converting a spark ignition (SI) engine powered vehicle to H2 fueling has several challenges, but was overall found to be feasible with contained cost. Fuel delivery directly to the cylinder features numerous advantages and can successfully mitigate backfire, a major issue for H2 SI engines. Within this context, the present work investigated the specific fuel system requirements in port- (PFI) and direct-injection (DI) configurations. A 0D/1D model was used to simulate engine operating characteristics in several working conditions. As expected, the model predicted significant improvement of volumetric efficiency for DI compared to the PFI configuration. Boosting requirements were predicted to be at levels quite close to those for gasoline fueling.
X