Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
Technical Paper

Design Under Uncertainty and Assessment of Performance Reliability of a Dual-Use Medium Truck with Hydraulic-Hybrid Powertrain and Fuel Cell Auxiliary Power Unit

2005-04-11
2005-01-1396
Medium trucks constitute a large market segment of the commercial transportation sector, and are also used widely for military tactical operations. Recent technological advances in hybrid powertrains and fuel cell auxiliary power units have enabled design alternatives that can improve fuel economy and reduce emissions dramatically. However, deterministic design optimization of these configurations may yield designs that are optimal with respect to performance but raise concerns regarding the reliability of achieving that performance over lifetime. In this article we identify and quantify uncertainties due to modeling approximations or incomplete information. We then model their propagation using Monte Carlo simulation and perform sensitivity analysis to isolate statistically significant uncertainties. Finally, we formulate and solve a series of reliability-based optimization problems and quantify tradeoffs between optimality and reliability.
X