Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Advance Noise Path Analysis, A Robust Engine Mount Optimization Tool

2003-10-27
2003-01-3117
Many design problems are discovered often late in the development process, when design flexibility is limited. It is the art of the refinement engineers to find a solution to any unpredicted issues at this stage. The refinement process contains many hours of testing and requires many prototypes. Having an accurate experimental model of the system in this phase could reduce refinement time significantly. One of the areas that usually require refinement and tuning late in the design process is engine and body mounting systems. In this paper, we introduce a technique to optimize the mounting system of a vehicle for a given objective function using experimental/numerical analysis. To obtain an accurate model of the vehicle, we introduce an experimental procedure based upon the substructuring method. The method eliminates the need for any accurate finite element method of the vehicle. Experimental results of the implementation of this approach to a real vehicle are presented.
Technical Paper

An Active Control Device Based on Differential Braking for Articulated Steer Vehicles

2006-10-31
2006-01-3568
In this study, application of differential braking strategy to remove the oscillatory instability or snaking behavior of an articulated steer vehicle is presented. First, a linearized model of the vehicle is described that is used to represent the equations of motion in the state-space form. Then, this model is utilized for designing a sliding mode controller to adjust the differential braking on the rear axle to stabilize the vehicle during the snaking. The performance of the resulting active control system is evaluated in different driving conditions by using the linearized model. Finally, the control system is incorporated into a virtual prototype of the vehicle in ADAMS, and its operation is examined. The results from the linear model analysis and simulations in ADAMS are reasonably consistent.
X