Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Investigation of the Engine Combustion Network Spray C Characteristics at High Temperature and High-Pressure Conditions Using Eulerian Model

2021-09-05
2021-24-0056
The morphology of the internal flow of Spray C was numerically investigated using an Eulerian volume-of-fluid (VOF) method in the finite-volume framework. The injector geometry available in the Engine Combustion Network (ECN) was employed, and the simulations were performed under the ambient condition at 900 K and 60 bar. The simulation data were analyzed for three important events: the initial nozzle opening, steady injection, and nozzle closing. First, projected densities on XY and XZ planes are computed radially at four axial locations. Projected density at 2 mm is compared with available experimental results, which show similar results. Then, the mass flow rate is found to match the reported experimental results and the virtually generated values from CMT using an appropriate discharge coefficient. An investigation on the appropriate discharge coefficient is performed and found that Cd = 0.63 ± 0.02 is acceptable for Spray C.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Experimental and Numerical Investigation of Ethanol/Diethyl Ether Mixtures in a CI Engine

2016-10-17
2016-01-2180
The auto-ignition characteristics of diethyl ether (DEE)/ethanol mixtures are investigated in compression ignition (CI) engines both numerically and experimentally. While DEE has a higher derived cetane number (DCN) of 139, ethanol exhibits poor ignition characteristics with a DCN of 8. DEE was used as an ignition promoter for the operation of ethanol in a CI engine. Mixtures of DEE and ethanol (DE), i.e., DE75 (75% DEE + 25% ethanol), DE50 (50% DEE + 50% ethanol) and DE25 (25% DEE + 75% ethanol), were tested in a CI engine. While DE75 and DE50 auto-ignited at an inlet air pressure of 1.5 bar, DE25 failed to auto-ignite even at boosted pressure of 2 bar. The peak in-cylinder pressure for diesel and DE75 were comparable, while DE50 showed reduced peak in-cylinder pressure with delayed start of combustion (SOC). Numerical simulations were conducted to study the engine combustion characteristics of DE mixture.
Technical Paper

Spray Modeling for Outwardly-Opening Hollow-Cone Injector

2016-04-05
2016-01-0844
The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure.
Technical Paper

Development of a CFD Solver for Primary Diesel Jet Atomization in FOAM-Extend

2019-09-09
2019-24-0128
Ongoing development of a CFD framework for the simulation of primary atomization of a high pressure diesel jet is presented in this work. The numerical model is based on a second order accurate, polyhedral Finite Volume (FV) method implemented in foam-extend-4.1, a community driven fork of the OpenFOAM software. A geometric Volume-of-Fluid (VOF) method isoAdvector is used for interface advection, while the Ghost Fluid Method (GFM) is used to handle the discontinuity of the pressure and the pressure gradient at the interface between the two phases: n-dodecane and air in the combustion chamber. In order to obtain highly resolved interface while minimizing computational time, an Adaptive Grid Refinement (AGR) strategy for arbitrary polyhedral cells is employed in order to refine the parts of the grid near the interface. Dynamic Load Balancing (DLB) is used in order to preserve parallel efficiency during AGR.
X