Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A New Decoupled CFD and FEM Methodology for the Fatigue Strength Assessment of an Engine Head

2008-04-14
2008-01-0972
A 2200 cc engine head for marine applications has been analysed and optimized by means of decoupled CFD and FEM simulations in order to assess the fatigue strength of the component. The fluid distribution within the cooling jacket was extensively analysed and improved in previous works, in order to enhance the performance of the coolant galleries. A simplified methodology was then proposed in order to estimate the thermo-mechanical behaviour of the head under actual engine operation [1, 2]. As a consequence of the many complex phenomena involved, an improved approach is presented in this paper, capable of a better characterization of the fatigue strength of the engine head under both high-cycle and low-cycle fatigue loadings. The improved methodology is once again based on a decoupled CFD and FEM analysis, with relevant improvements added to both simulation realms.
Technical Paper

Thermo-Structural Analysis of a New Engine Cylinder Head

2011-09-11
2011-24-0165
An engine head for microcar applications has been analysed and optimized by means of uncoupled CFD and FEM simulations in order to assess the strength of the component. This paper deals with a structural stress analysis of the cylinder head considering the thermal loads computed through an uncoupled CFD simulations of cylinder combustion and in cooling flow passages. The FE model includes the contact interaction between the main parts of the cylinder head assembly and it also considers the effects of bolts tightening and valve springs. Temperature dependent non-linear material properties are considered. The results, in term of temperature field, are validated by comparing with those obtained by means of experimental analyses; the engine has been instrumented with thermocouples on crank case and on cylinder head.
Technical Paper

A Tridimensional CFD Analysis of the Lubrication Circuit of a Non-Road Application Diesel Engine

2013-09-08
2013-24-0130
The aim of this paper is the analysis of a Diesel engine lubrication circuit with a tri-dimensional CFD technique. The simulation model was built using Pumplinx®, a commercial code by Simerics Inc.®, developed and optimized for predicting oil flow rates and cavitation phenomena. The aim of this paper is, also, to show that this code is able to satisfactorily model, in a very “economic” way, an unsteady hydraulic system such as the lubrication circuit First of all, an accurate model of a lubrication circuit oil pump will be described. The model was validated with data from an experimental campaign carried out in the hydraulic laboratory of the Industrial Engineering Department of the University of Naples. Secondly, the oil pump model was coupled with a tri-dimensional model of the entire lubrication circuit, in order to compute all the hydraulic resistances of the network and the oil consumption rate of the circuit components
Technical Paper

CFD and FEM Analysis of a New Engine for Light Transportation Vehicles

2013-09-08
2013-24-0140
An engine head of a common rail direct injection engine with three in line cylinders for Light Transportation Vehicle (LTV) applications has been analyzed and optimized by means of uncoupled CFD and FEM simulations in order to assess the strength of the components. This paper deals with a structural stress analysis of the cylinder head considering the thermal loads computed through an CFD simulation and a detailed FV heat-transfer analysis. The FE model of the cylinder head includes the contact interaction between the main parts of the cylinder head assembly and it is subjected to the gas pressure, thermal loads and the effects of bolts tightening and valve springs. The results, in term of temperature field, are validated by comparing with those obtained by means of experimental analyses. Then a fatigue assessment of the cylinder head has been performed using a multi-axial fatigue criterion.
X