Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Torque-Vectoring Control for an Autonomous and Driverless Electric Racing Vehicle with Multiple Motors

2017-03-28
2017-01-1597
Electric vehicles with multiple motors permit continuous direct yaw moment control, also called torque-vectoring. This allows to significantly enhance the cornering response, e.g., by extending the linear region of the vehicle understeer characteristic, and by increasing the maximum achievable lateral acceleration. These benefits are well documented for human-driven cars, yet limited information is available for autonomous/driverless vehicles. In particular, over the last few years, steering controllers for automated driving at the cornering limit have considerably advanced, but it is unclear how these controllers should be integrated alongside a torque-vectoring system. This contribution discusses the integration of torque-vectoring control and automated driving, including the design and implementation of the torque-vectoring controller of an autonomous electric vehicle for a novel racing competition. The paper presents the main vehicle characteristics and control architecture.
Technical Paper

Electro-Mechanical Active Roll Control: A New Solution for Active Suspensions

2006-02-14
2006-01-1966
The paper presents the approach followed by Politecnico di Torino Vehicle Dynamics Research team to design an electro-mechanical Active Roll Control (ARC) system. The first part of the paper describes the targets of the system, which has to improve both comfort and handling. Different solutions for the implementation of the electro-mechanical actuation were evaluated. A prototype of the electro-mechanical Active Roll Control was built and experimentally tested in the Vehicle Dynamics Laboratory of the Department of Mechanics of Politecnico di Torino, by adopting a Hardware-In-the-Loop (HIL) test bench. The experimental results show the benefits of the system, both in a stand alone configuration and integrated with an Electronic Stability Control (ESC) system.
X