Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Zero-Dimensional Spark Ignition Combustion Modeling - A Comparison of Different Approaches

2013-09-08
2013-24-0022
Internal combustion engines development with increased complexity due to CO2 reduction and emissions regulation, while reducing costs and duration of development projects, makes numerical simulation essential. 1D engine simulation software response for the gas exchange process is sufficiently accurate and quick. However, combustion simulation by Wiebe function is poorly predictive. The objective of this paper is to compare different approaches for 0D Spark Ignition (SI) modeling. Versions of Eddy Burn Up, Fractal and Flame Surface Density (FSD) models have been coded into GT-POWER platform, which connects thermodynamics, gas exchange and combustion sub-models. An initial flame kernel is imposed and then, the flame front propagates spherically in the combustion chamber. Flame surface is tabulated as a function of piston position and flame radius. The modeling of key features of SI combustion such as laminar flame speed and thickness and turbulence was common.
Technical Paper

Combination of High EGR Rates and Multiple Injection Strategies to Reduce Pollutant Emissions

2005-10-24
2005-01-3726
This paper describes mid-load experimental tests combining massive EGR rates and multiple injection strategies. Influence of very high EGR rates on combustion has been reviewed, and a response-surface-modeling tool has been used to present main results. Outputs from this empirical model did highlight a dramatic soot increase when oxygen concentration is reduced. The empirical model based on experimental results model was also used to define more precisely the EGR rate needed to reach US 2010 NOx target. This EGR rate being defined, some investigation has been made on dual-injection strategies combining a main injection with an early pilot injection. Both quantity and timing of pilot injection were varied, and experimental results showed large benefits of this strategy to reduce soot emissions without significant increase of NOx emissions or fuel consumption. Better results were also experienced with the addition of a close post-injection.
X