Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Combination of In-Cylinder Pressure Signal Analysis and CFD Simulation for Knock Detection Purposes

2009-09-13
2009-24-0019
A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. The paper aim is a better understanding of the phenomena involved in knocking combustions through the combination of CFD and signals analysis tools. CFD simulations have been used in order to reproduce knock effect on the in-cylinder pressure trace. In fact, the in-cylinder pressure signal holds information about waves propagation and heat losses: for the sake of the diagnosis it is important to relate knock severity to knock indexes values. For this purpose, a CFD model has been implemented, able to predict the combustion evolution with respect to Spark Advance, from non-knocking up to heavy knocking conditions. The CFD model validation phase is crucial for a correct representation of both regular and knocking combustions: the operation has been carried out by means of an accurate statistical analysis of experimental in-cylinder pressure data.
Journal Article

Relating Knocking Combustions Effects to Measurable Data

2015-09-06
2015-24-2429
Knocking combustions heavily influence the efficiency of Spark Ignition engines, limiting the compression ratio and sometimes preventing the use of Maximum Brake Torque (MBT) Spark Advance (SA). A detailed analysis of knocking events can help in improving the engine performance and diagnostic strategies. An effective way is to use advanced 3D Computational Fluid Dynamics (CFD) simulation for the analysis and prediction of the combustion process. The standard 3D CFD approach based on RANS (Reynolds Averaged Navier Stokes) equations allows the analysis of the average engine cycle. However, the knocking phenomenon is heavily affected by the Cycle to Cycle Variation (CCV): the effects of CCV on knocking combustions are then taken into account, maintaining a RANS CFD approach, while representing a complex running condition, where knock intensity changes from cycle to cycle.
Journal Article

A Control-Oriented Knock Intensity Estimator

2017-09-04
2017-24-0055
The performance optimization of modern Spark Ignition engines is limited by knock occurrence: heavily downsized engines often are forced to work in the Knock-Limited Spark Advance (KLSA) range. Knock control systems monitor the combustion process, allowing to achieve a proper compromise between performance and reliability. Combustion monitoring is usually carried out by means of accelerometers or ion sensing systems, but recently the use of cylinder pressure sensors is also becoming frequent in motorsport applications. On the other hand, cylinder pressure signals are often available in the calibration stage, where SA feedback-control based on the pressure signal can be used to avoid damages to the engine during automatic calibration. A predictive real-time combustion model could help optimizing engine performance, without exceeding the allowed knock severity.
Technical Paper

Knock Indexes Thresholds Setting Methodology

2007-04-16
2007-01-1508
Gasoline engines can be affected, under certain operating conditions, by knocking combustions: this is still a factor limiting engines performance, and an accurate control is required for those engines working near the knock limit, in order to avoid permanent damage. HCCI engines also need a sophisticated combustion monitoring methodology, especially for high BMEP operating conditions. Many methodologies can be found in the literature to recognize potentially dangerous combustions, based on the analysis of the in-cylinder pressure signal. The signal is usually filtered and processed, in order to obtain an index that is then be compared to the knock threshold level. Thresholds setting is a challenging task, since usually indexes are not intrinsically related to the damages caused by abnormal combustions events. Furthermore, their values strongly depend on the engine operating conditions (speed and load), and thresholds must therefore vary with respect to speed and load.
Technical Paper

Statistical Analysis of Indicating Parameters for Knock Detection Purposes

2009-04-20
2009-01-0237
Specific power and efficiency of gasoline engines are influenced by factors such as compression ratio and Spark Advance (SA) regulation. These factors influence the combustion development over the crank angle: the trade-off between performance and the risk of irreversible damages is still a key element in the design of both high-performance (racing) and low-consumption engines. This paper presents a novel approach to the problem, with the objective of defining a damage-related and operating conditions-independent index. The methodology is based on the combined analysis of indicating parameters, such as Cumulated Heat Release (CHR), Indicated Mean Effective Pressure (IMEP) and 50% Mass Fraction Burned (MFB50), and typical knock detection parameters, estimated by means of the in-cylinder pressure sensor signal. Knocking combustions have several consequences, therefore they can be detected in many ways.
Technical Paper

Statistical Analysis of Knock Intensity Probability Distribution and Development of 0-D Predictive Knock Model for a SI TC Engine

2018-04-03
2018-01-0858
Knock is a non-deterministic phenomenon and its intensity is typically defined by a non-symmetrical distribution, under fixed operating conditions. A statistical approach is therefore the correct way to study knock features. Typically, intrinsically deterministic knock models need to artificially introduce Cycle-to-Cycle Variation (CCV) of relevant combustion parameters, or of cycle initial conditions, to generate different knock intensity values for a given operating condition. Their output is limited to the percentage of knocking cycles, once the user imposes an arbitrary knock intensity threshold to define the correlation between the number of knocking events and the Spark Advance (SA). In the first part of the paper, a statistical analysis of knock intensity is carried out: for different values of SA, the probability distributions of an experimental Knock Index (KI) are self-compared, and the characteristics of some percentiles are highlighted.
Technical Paper

Knock Indexes Normalization Methodologies

2006-09-14
2006-01-2998
Gasoline engines can be affected, under certain operating conditions, by knocking combustions, which can result in serious engine damage. Specific power and efficiency are influenced by factors such as compression ratio and spark advance regulation, that modify the combustion development over the crank angle: the trade-off between performance and the risk of irreversible damages is still a key factor in the design of both high-performance (racing) and low-consumption engines. New generation detection systems, especially based on ionization current technology, allow aggressive advance mapping and control, and future equipment, such as low-cost in-cylinder pressure transducers, will allow following that trend. Also HCCI (Homogeneous Charge Compression Ignition) engines need a sophisticated combustion monitoring methodology, since increasing BMEP levels in HCCI mode force the combustion to approach the knocking operation.
Technical Paper

A RANS CFD 3D Methodology for the Evaluation of the Effects of Cycle By Cycle Variation on Knock Tendency of a High Performance Spark Ignition Engine

2014-04-01
2014-01-1223
Knocking combustions heavily limits the efficiency of Spark Ignition engines. The compression ratio is limited in the design stage of the engine development, letting to Spark Advance control the task of reducing the odds of abnormal combustions. A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. An effective way is to use advanced 3D CFD (Computational Fluid Dynamics) simulation for the analysis and prediction of combustion performance. Standard 3D CFD approach is based on RANS (Reynolds Averaged Navier Stokes) equations and allows the analysis of the mean engine cycle. However knocking phenomenon is not deterministic and it is heavily affected by the cycle to cycle variation of engine combustions. A methodology for the evaluation of the effects of CCV (Cycle by Cycle Variability) on knocking combustions is here presented, based on both the use of Computation Fluid Dynamics (CFD) tools and experimental information.
X