Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Elastohydrodynamics of Hypoid Gears in Axle Whine Conditions

2012-06-13
2012-01-1538
This paper presents an investigation into Elastohydrodynamic (EHL) modeling of differential hypoid gears that can be used in coupling with Newtonian (or multibody) dynamics to study Noise, Vibration and Harshness (NVH) phenomena, such as axle whine. The latter is a noise of a tonal nature, emitted from differential axles, characterised by the gear meshing frequency and its multiples. It appears at a variety of operating conditions; during drive and coasting, high and low torque loading. Key design targets for differential hypoid gears are improved efficiency and reduced vibration, which depend critically on the formation of an EHL lubricant film. The stiffness and damping of the oil film and friction generated in the contact can have important effects and cannot be neglected when examining the NVH behaviour of hypoid gears.
Technical Paper

A Study on Attenuating Gear Teeth Oscillations at Low Engine Speeds Using Nonlinear Vibration Absorbers

2018-06-13
2018-01-1477
Gear oscillations are one of the most common sources of Noise, Vibration and Harshness (NVH) issues manifested in automotive powertrains. These oscillations are generated mainly due to impacts of the meshing gear teeth over a broad frequency range. To mitigate NVH phenomena, automotive manufacturers traditionally couple linear tuned vibration absorbers to the driveline. Common palliatives used are clutch dampers and dual mass flywheels, which generally suppress vibrations effectively only over narrow frequency bands. Nonlinear Energy Sinks (NESs) are a class of vibration absorbers with essentially nonlinear characteristics that are designed for dissipating vibration energy over broad frequency ranges (due to the employed nonlinearity). The NES does not have a preferential natural frequency; this is rather characterized by the nonlinear stiffness.
X