Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector

2006-10-16
2006-01-3433
In order to investigate the effects of split injection on emission formation and engine performance, experiments were carried out using a heavy duty single cylinder diesel engine. Split injections with varied dwell time and start of injection were investigated and compared with single injection cases. In order to isolate the effect of the selected parameters, other variables were kept constant. In this investigation no EGR was used. The engine was equipped with a common rail injection system with a piezo-electric injector. To interpret the observed phenomena, engine CFD simulations using the KIVA-3V code were also made. The results show that reductions in NOx emissions and brake specific fuel consumption were achieved for short dwell times whereas they both were increased when the dwell time was prolonged. No EGR was used so the soot levels were already very low in the cases of single injections.
Technical Paper

Effects of Multiple Injections on Engine-Out Emission Levels Including Particulate Mass from an HSDI Diesel Engine

2007-04-16
2007-01-0910
The effects of multiple injections on engine-out emissions from a high-speed direct injection (HSDI) diesel engine were investigated in a series of experiments using a single cylinder research engine. Injection sequences in which the main injection was split into two, three and four pulses were tested and the resulting emissions (NOx, CO HC and particulate matter), torque and cylinder pressures were compared to those obtained with single injections. Together with the number of injections, the effects of varying the dwell time were also investigated. It was found that dividing the main injection into two parts lowered the engine-out particulate and CO emissions and increased fuel efficiency. However, it also resulted in increased NOx emissions.
Technical Paper

The Effect of Non-Circular Nozzle Holes on Combustion and Emission Formation in a Heavy Duty Diesel Engine

2002-10-21
2002-01-2671
Non-circular holes are believed to have a potential in reducing the smoke emissions from a diesel engine by entraining more air into the spray due to the larger surface area exposed between fuel and air. The idea is based on results from investigations of gas jets, where the air entrainment for elliptical jets was increased substantially compared to circular jets. Non-circular nozzle holes were tested in a 2 liter single cylinder heavy duty diesel engine and compared with standard circular nozzle holes. The non-circular holes, which were made with aspect ratios of close to 2:1 and 4:1, have a similar flow rate as the conventional circular holes. Two different angles of the major axis orientation to the injector centerline were used. The engine tests were done at constant speed with both high and low load conditions and were repeated several times. Emissions, fuel consumption and cylinder pressure were measured and are presented together with calculated rate of heat release curves.
Journal Article

Optimization and Evaluation of a Low Temperature Waste Heat Recovery System for a Heavy Duty Engine over a Transient Cycle

2020-09-15
2020-01-2033
Powertrain efficiency is a critical factor in lowering fuel consumption and reducing the emission of greenhouse gases for an internal combustion engine. One method to increase the powertrain efficiency is to recover some of the wasted heat from the engine using a waste heat recovery system e.g. an organic Rankine cycle. Most waste heat recovery systems in use today for combustion engines use the waste heat from the exhaust gases due to the high temperatures and hence, high energy quality. However, the coolant represents a major source of waste heat in the engine that is mostly overlooked due to its lower temperature. This paper studies the potential of using elevated coolant temperatures in internal combustion engines to improve the viability of low temperature waste heat recovery.
X