Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Altitude Conditions on Combustion and Performance of a Multi-Cylinder Turbocharged Direct-Injection Diesel Engine

2016-04-05
2016-01-0742
The objective of the study is to characterize combustion and performance of a multi-cylinder turbocharged direct-injection (DI) diesel engine at altitude conditions according to the International Standard Atmosphere (ISA). Experiments were performed on the 6.6-liter turbocharged DI diesel engine, a model similar to that of the Army’s Joint Light Tactical Vehicle. The engine was installed in the US Army Research Laboratory Small Engine Altitude Research Facility. Outside air temperature (OAT) and outside air pressure were independently controlled to match the ISA-OAT at selected altitude conditions: sea level, 1524, 3048, and 4572 m. The test engine is equipped with a single-stage variable nozzle turbocharger and Bosch CRIN 3 common-rail injection system. Three load conditions (i.e., low, mid, and high) were selected at 1400 rpm to investigate combustion and performance of the engine using Jet Propellant-8 (JP-8) fuel.
Technical Paper

Kilohertz Mie Scattering and OH* Chemiluminescence Imaging of JP-8 Multiple Injections Using a 250 MPa Fuel Injector

2017-03-28
2017-01-0832
The objective of the study was to investigate the spray and combustion characteristics of Jet Propellant-8 (JP-8) using a high-pressure fuel injector which is capable of up to 250-MPa fuel injection pressure. Experiments were performed in a constant-pressure flow-through combustion chamber at the ambient conditions of 825 K and 6 MPa for the oxygen concentration of 0 and 21%. JP-8 was injected over a range of fuel injection pressures from 50 to 250 MPa for single injection events to establish a baseline operation. Pilot and post injections were used to study the effect of multiple injections on spray and combustion of the high-pressure fuel injector. Both pilot and post injection separation times and quantities were systematically varied. JP-8 spray and combustion events were imaged at 75 kHz using a combination of Mie scattering and OH* chemiluminescence imaging.
X