Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Effect of Charge Air and Fuel Injection Parameters on Combustion with High Levels of EGR in a HDDI Single Cylinder Diesel Engine

2007-04-16
2007-01-0914
When increasing EGR from low levels to levels corresponding to low temperature combustion, soot emissions first start to increase (due to reductions in soot oxidation), before decreasing to almost zero (due to very low rates of soot formation). At the EGR level where soot emissions start to increase, the NOx emissions are still low, but not low enough to comply with future emission standards. The purpose of this study was therefore to investigate the possibilities for moving the so-called “soot bump” (increase in soot) to higher EGR levels or reducing the magnitude of the soot bump. This involved an experimental investigation of parameters affecting the combustion and thus the engine-out emissions. The parameters investigated were: charge air pressure, injection pressure, EGR temperature and post injection (with different dwell times) for a wide range of EGR rates.
Technical Paper

Experimental Investigation of the Effect of Needle Opening (NOP) Pressure on Combustion and Emissions Formation in a Heavy Duty DI Diesel Engine

2004-10-25
2004-01-2921
This paper presents an investigation of the effects of varying needle opening pressure (NOP) (375 to 1750 bar), engine speed (1000 rpm to 1800 rpm), and exhaust gas recirculation (EGR) (0% to 20 %) on the combustion process, exhaust emissions, and fuel consumption at low (25 %) and medium (50 %) loads in a single cylinder heavy duty DI diesel research engine with a displacement of 2.02 l. The engine was equipped with an advanced two-actuator E3 Electronic Unit Injector (EUI) from Delphi Diesel, with a maximum injection pressure of 2000 bar. In previous versions of the EUI system, the peak injection pressure was a function of the injection duration, cam lift, and cam rate. The advanced EUI system allows electronic control of the needle opening and closing. This facilitates the generation of high injection pressures, independently of load and speed.
X