Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

2014-09-30
2014-01-2292
Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Technical Paper

Study on the Effects of Rubber Compounds on Tire Performance on Ice

2020-04-14
2020-01-1228
Mechanical and thermal properties of the rubber compounds of a tire play an important role in the overall performance of the tire when it is in contact with the terrain. Although there are many studies conducted on the properties of the rubber compounds of the tire to improve some of the tire characteristics such as the wear of the tread, there is a limited number of studies that focused on the performance of the tire when it is in contact with ice. This study is a part of a more comprehensive project looking into tire-ice performance and modeling. A significant part of this study is the experimental investigation of the effect of rubber compounds on tire performance in contact with ice. For this, four tires have been selected for testing. Three of them are completely identical in all tire parameters (such as tire dimensions), except for the rubber compounds. Several tests were conducted for the chosen tires in three modes: free rolling, braking, and traction.
Technical Paper

Development of a Virtual Terramechanics Rig (VTR) for Experimental Validation

2006-10-31
2006-01-3481
The study of tire-terrain interaction is integral to understanding the traction characteristics of a tire operating on soft soil under various conditions. As such, there exists a need to recreate the operating conditions for the tire under controlled laboratory environments to analyze factors that will affect operating behavior. A terramechanics rig is an experimental setup that will enable researchers to apply known loading conditions to a tire under known terrain conditions, hence enabling the researcher to gather data such as forces, moments and states of the tire in the presence of terrain data such as soil type, density and moisture content. Such an experimental facility is currently under design and construction in the Advanced Vehicle Dynamic Laboratory at Virginia Tech. In this study, a multibody mechanics model of the rig is presented.
Technical Paper

Stochastic Modeling of Terrain Profiles and Soil Parameters

2005-11-01
2005-01-3559
One fundamental difficulty in understanding the physics of the off-road traction and in predicting vehicle performance is the variability of the terrain profile and soil parameters. These operating conditions are uniquely defined at a given spatial location and a given time. It is not practically feasible, however, to measure them at a sufficiently large number of points to be able to accurately represent the terrain in models. This renders traditional analysis tools insufficient when dealing with rough deformable terrain. We employ stochastic analysis to capture the uncertain nature of this running support and the corresponding vehicle response. From a finite number of observations the terrain profile and soil properties can be modeled as random processes, with the actual operating conditions viewed as a particular realization of these processes. Soil parameters vary substantially from one type of soil to another.
X