Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Cold-end Temperature Control Method for the Engine Exhaust Heat Thermoelectric Module

2014-09-30
2014-01-2343
To make full use of engine exhaust heat and further improve the utilization of the energy efficiency of the heavy truck, thermoelectric module is used to contribute to thermoelectric power generation. The hot-end temperature of the module varies with the engine operating condition because it is connected with the exhaust pipe. The cold-end of the thermoelectric module is mainly cooled by engine cooling system. Increasing the temperature difference between the hot-end and cold-end of the thermoelectric module is a good way to improve the thermoelectric conversion efficiency. For the poor controllability of the hot-end temperature of the thermoelectric module, this study puts forward by lowering the cold-end temperature of the thermoelectric module so as to ensure the improvement of the thermoelectric conversion efficiency. The cooling circle for the cold-end of the thermoelectric module which is independent of the engine cooling system is built.
Technical Paper

Research on Integration of Automotive Exhaust-Based Thermoelectric Generator with Front Muffler

2016-04-05
2016-01-0203
In order to make full use of engine exhaust heat, the thermoelectric module been used to contribute to thermoelectric power generation in the automotive. At present, the thermoelectric generators (TEGs) have been developing with continuously advances in thermoelectric technology. And almost all of the existing thermoelectric technologies are adding a gas tank to the vehicle exhaust system which increases the exhaust back pressure and occupying excessive space of the vehicle chassis. In this study, a new TEG integrated with a front silencer muffler (FMTEG) is proposed. The muffler is reshaped as the heat exchanger which has a hexagon cross-section. The water tank and clamping mechanism have been redesigned for the new heat exchanger. The FMTEG system’s dimensions are small that can well meet the installation requirements and has a good compatibility with the vehicle exhaust system.
Technical Paper

Research on and Thermal Performance of the Heat Exchanger in Automotive Exhaust-Based Thermoelectric Generator

2014-10-13
2014-01-2594
Automotive exhaust-based thermoelectric generator (TEG), which effectively converts exhaust thermal energy into electrical energy, can gradually improve the utilization efficiency of energy. The heat exchanger of TEG is one of the most important components for heat transfer, so as to realize energy saving and emission reduction. Hence, its configuration and thermal performance should be intensively studied. In this paper, a new configuration of heat exchanger, whose heat transfer area is regular octagon, is designed in comparison with the pervious rectangle one. In order to improve average temperature and thermal distribution uniformity, typical CFD software named FLUENT is used to simulate the multi-coupling of temperature - fluid - solid, and the temperature distribution on heat transfer area is gained. Moreover, the temperature distribution will be analyzed to evaluate the merits and weaknesses of configuration and thermal performance.
X