Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Dual Fuel Combustion Study Using 3D CFD Tool

2016-04-05
2016-01-0595
The current boom in natural gas from shale formations in the United States has reduced the price of natural gas to less than the price of petroleum fuels. Thus it is attractive to convert high horsepower diesel engines that use large quantities of fuel to dual fuel operation where a portion of the diesel fuel is replaced by natural gas. The substitution is limited by emissions of unburned natural gas and severe combustion phenomena such as auto-ignition or knock of the mixture and high rates of pressure rise during the ignition and early phase combustion of the diesel and natural gas-air mixture. In this work, the combustion process for dual fuel combustion was investigated using 3D CFD. The combustion process was modeled using detailed chemistry and a simulation domain sensitivity study was conducted to investigate the combustion to CFD geometry assumptions. A baseline model capturing the onset of knock was validated against experimental data from a heavy-duty dual-fuel engine.
Technical Paper

HCCI in a Variable Compression Ratio Engine-Effects of Engine Variables

2004-06-08
2004-01-1971
Homogeneous Charge Compression Ignition (HCCI) experiments were performed in a variable compression ratio single cylinder engine. This is the fourth paper resulting from work performed at Southwest Research Institute in this HCCI engine. The experimental variables, in addition to speed and load, included compression ratio, EGR level, intake manifold pressure and temperature, fuel introduction location, and fuel composition. Mixture preparation and start of reaction control were identified as fundamental problems that required non-traditional mixture preparation and control strategies. The effects of the independent variable on the start of reaction have been documented. For fuels that display significant pre-flame reactions, the start of the pre-flame reactions is controlled primarily by the selection of the fuel and the temperature history of the fuel air mixture.
Technical Paper

Combustion Chamber Development for Flat Firedeck Heavy-Duty Natural Gas Engines

2024-04-09
2024-01-2115
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine.
X