Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Influence of Different Fuel Properties and Gasoline - Ethanol Blends on Low-Speed Pre-Ignition in Turbocharged Direct Injection Spark Ignition Engines

2016-04-05
2016-01-0719
In recent years a new combustion phenomenon called Low-Speed Pre-Ignition (LSPI) occurred, which is the most important limiting factor to exploit further downsizing potential due to the associated peak pressures and thus the huge damage potential. In the past there were already several triggers for pre-ignitions identified, whereat engine oil seems to have an important influence. Other studies have reported that detached oil droplets from the piston crevice volume lead to auto-ignition prior to spark ignition. However, wall wetting and subsequently oil dilution and changes in the oil properties by impinging fuel on the cylinder wall seem to have a significant influence in terms of accumulation and detachment of oil-fuel droplets in the combustion chamber. For this reason, the influence of test fuels with different volatility were investigated in order to verify their influence on wall wetting, detachment and pre-ignition tendency.
Technical Paper

Impact of Oil Aging on Wear of Piston Ring and Cylinder Liner System

2010-09-28
2010-32-0124
The piston ring and cylinder liner tribosystem is very sensitive. It is a heavily loaded system with high temperature and force exposure. High demands are made on the components in this area. These facts concern not only system components, but also the engine oil which can reach up to 300°C at the inner cylinder walls. High temperatures and force cause oil aging. As a part of the combustion chamber, the piston ring-cylinder liner tribosystem is in close contact with combustion constituents. If alternative fuels like ethanol are used, the influences to this tribosystem have to be investigated. In particular, the impacts of oil aging have to be considered to avoid higher wear and damage to the engine, to assure low fuel consumption, and to extend oil change intervals. Research work on abrasion of the ring-cylinder system was aimed to gain detailed information about the effects on this tribosystem.
Technical Paper

Influence of Different Oil Properties on Low-Speed Pre-Ignition in Turbocharged Direct Injection Spark Ignition Engines

2016-04-05
2016-01-0718
In recent years concern has arisen over a new combustion anomaly, which was not commonly associated with naturally aspirated engines. This phenomenon referred to as Low-Speed Pre-Ignition (LSPI), which often leads to potentially damaging peak cylinder pressures, is the most important factor limiting further downsizing and the potential CO2 benefits that it could bring. Previous studies have identified several potential triggers for pre-ignition where engine oil seems to have an important influence. Many studies [1], [2] have reported that detached oil droplets from the piston crevice volume lead to auto-ignition prior to spark ignition. Furthermore, wall wetting and subsequently oil dilution [3] and changes in the oil properties by impinging fuel on the cylinder wall seem to have a significant influence in terms of accumulation and detachment of oil-fuel droplets in the combustion chamber.
Technical Paper

Implementation of a Rotary Engine (Wankel Engine) in a CFD Simulation Tool with Special Emphasis on Combustion and Flow Phenomena

2015-04-14
2015-01-0382
This paper describes the development of a comprehensive simulation environment for investigations of gas-dynamic processes and combustion phenomena in rotary engines, conducted by the Austrian Institute for Powertrains and Automotive Technology of the Vienna University of Technology. In this connection, proven, commercially available engine cycle calculation Software-Tools have been used. For this, a rotary engine test bench has been established. As analysis tools, in addition to the traditional acquisition of the emitted engine torque, various pressures and temperatures, the recording of the pressure profile (combustion analysis measurement system) in the combustion chamber, as well as in the intake and exhaust ports, were used. The data of the test bench were used to develop and validate the methodology for the simulation tools. The focus in this paper is the development of a CFD (computational fluid dynamics) model with the software Converge from Convergent Science, Inc.
X