Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Penn State FutureTruck Hybrid Electric Vehicle: Light-Duty Diesel Exhaust Emission Control System to Meet ULEV Emissions Standard

2005-01-24
2005-01-3877
Two of the goals of the Penn State FutureTruck project were to reduce the emissions of the hybrid electric Ford Explorer to ULEV or lower, and improve the fuel economy by 25% over the stock vehicle. The hybrid electric vehicle system is powered with a 103kW 2.5L Detroit Diesel engine which operates with a fuel blend consisting of ultra-low-sulfur diesel and biodiesel (35%). Lower emissions are inherently achieved by the use of biodiesel. Additionally, the engine was fitted with a series of aftertreatment devices in an effort to achieve the low emissions standards. Vehicle testing has shown a gasoline-equivalent fuel economy improvement of approximately 22%, a reduction in greenhouse gas emissions by approximately 38%, and meeting or exceeding stock emissions numbers in all other categories through the use of an advanced catalyst and control strategy.
Technical Paper

A Study of the Factors Determining Knocking Intensity Based on High-Speed Observation of End-Gas Autoignition Using an Optically Accessible Engine

2018-10-30
2018-32-0003
The purpose of this study was to investigate how autoignition leads to the occurrence of pressure oscillations. That was done on the basis of in-cylinder visualization and analysis of flame images captured with a high-speed camera using an optically accessible engine, in-cylinder pressure measurement and measurement of light emission from formaldehyde (HCHO). The results revealed that knocking intensity tended to be stronger with a faster localized growth speed of autoignition. An investigation was also made of the effect of exhaust gas recirculation (EGR) as a means of reducing knocking intensity. The results showed that the application of EGR advanced the ignition timing, thereby reducing knocking intensity under the conditions where knocking occurred.
X