Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Engine-Out Emissions Characteristics of a Light Duty Vehicle Operating on a Hydrogenated Vegetable Oil Renewable Diesel

2020-04-14
2020-01-0337
We assessed the engine-out emissions of an ultra-low sulfur diesel (ULSD) and a neat hydrogenated vegetable oil (HVO) from a light-duty diesel truck equipped with common rail direct injection. The vehicle was tested at least twice on each fuel using the LA-92 drive cycle and at steady-state conditions at 30 mph and 50 mph at different loads. Results showed reductions in the engine-out total hydrocarbon (THC), carbon monoxide (CO), nitrogen oxide (NOx), and particulate emissions with HVO. The reductions in soot mass, solid particle number, and particulate matter (PM) mass emissions with HVO were due to the absence of aromatic and polyaromatic hydrocarbon compounds, as well as sulfur species, which are known precursors of soot formation. Volumetric fuel economy, calculated based on the carbon balance method, did not show statistically significant differences between the fuels.
Journal Article

Regulated Emissions, Air Toxics, and Particle Emissions from SI-DI Light-Duty Vehicles Operating on Different Iso-Butanol and Ethanol Blends

2014-04-01
2014-01-1451
Gasoline direct injection (GDI) engines have improved thermodynamic efficiency (and thus lower fuel consumption) and power output compared with port fuel injection (PFI) and their penetration is expected to rapidly grow in the near future in the U.S. market. In addition, the use of alternative fuels is expanding, with a potential increase in ethanol content beyond the current 10%. Increased emphasis has been placed on butanol due to its more favorable fuel properties, as well as new developments in production processes. This study explores the influence of mid-level ethanol and iso-butanol blends on criteria emissions, gaseous air toxics, and particulate emissions from two wall-guided gasoline direct injection passenger cars fitted with three-way catalysts. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer.
Technical Paper

The Influence of Engine Lubricating Oil on Diesel Nanoparticle Emissions and Kinetics of Oxidation

2003-10-27
2003-01-3179
Earlier work [1] shows that kinetics of Diesel soot oxidation is different from that of ethylene diffusion flame soot oxidation [2], possibly due to metals from lube oil. This study investigates the influence of metals on soot oxidation and the exhaust particle emissions using lube oil dosed fuel (2 % by volume). This method does not simulate normal lube oil consumption, but is used as a means of adding metals to particles for oxidation studies. This study also provides insight into the effect of systems that mix lube oil with fuel to minimize oil change service. The HTO-TDMA (High Temperature Oxidation-Tandem Differential Mobility Analyzer) technique [1] was used to measure the surface specific oxidation rate of Diesel particles over the temperature range 500-750 °C. Diesel particles sampled from the exhaust stream of a Diesel engine were size segregated by differential mobility and oxidized in situ in air in a heated flow tube of known residence time and temperature profile.
Technical Paper

Modeling CO2 Concentrations in Vehicle Cabin

2013-04-08
2013-01-1497
Passengers are exposed to roadway pollutants due to entrainment of outside air into the vehicle cabin. Previous works found cabin air-recirculation can reduce pollutant particle concentrations significantly. However simultaneous increase of CO₂ concentrations in the cabin prevented wide use of recirculation mode for such purpose. A mathematical model was developed to predict CO₂ concentrations in vehicle cabin air during air-recirculation mode. The model predicts temporal CO₂ concentration changes as a function of cabin volume, vehicle body leakage, and number of passengers. This model can be used to design and control air-recirculation mode for a variety of vehicle conditions.
Technical Paper

Vehicle Cabin Air Quality with Fractional Air Recirculation

2013-04-08
2013-01-1494
A fractional recirculation of cabin air was proposed and studied to improve cabin air quality by reducing cabin particle concentrations. Vehicle tests were run with differing number of passengers (1, 2, 3, and 4), four fan speed settings and at 20, 40, and 70 mph. A manual control was installed for the recirculation flap door so different ratios of fresh air to recirculated air could be used. Full recirculation is the most efficient setting in terms of thermal management and particle concentration reduction, but this causes elevated CO₂ levels in the cabin. The study demonstrated cabin CO₂ concentrations could be controlled below a target level of 2000 ppm at various driving conditions and fan speeds with more than 85% of recirculation. The proposed fractional air recirculation method is a simple yet innovative way of improving cabin air quality. Some energy saving is also expected, especially with the air conditioning system.
Technical Paper

On-Road Real-Time Hyper-Local Air Quality Monitoring Based on Mobile IoT Enabled by a Network of Vehicles Equipped with Air Quality Sensors

2023-04-11
2023-01-0049
People are exposed to disproportionately high concentrations of air pollutants daily on and near the road during their ride, walk, and residency. Currently air quality monitoring is performed mostly at background locations far away from the road and distinctive point, line, and area emission sources, failing to report concentrations on the road. This study presents an innovative air quality monitoring method using a network of vehicles equipped with air quality sensors (AQSs). Vehicles are connected to internet through either cell link or apps used by drivers. A cloud server collects the data and updates air quality concentration maps every 10 minutes. The study presents very high temporal and spatial resolution maps at a fraction of the cost of previous studies.
Journal Article

Performance and Activity Characteristics of Zero Emission Battery-Electric Cargo Handling Equipment at a Port Terminal

2022-03-29
2022-01-0576
Goods movement and port related activities are a significant source of emissions in many large urban areas. Electrification of diesel cargo handling equipment is one method of reducing community exposure to these emissions, that also provides the potential for reducing greenhouse gas emissions. This study evaluated the performance of several pieces of zero emission cargo transfer equipment for a demonstration conducted at two terminal locations at the Port of Long Beach (POLB). This included the data logging of three battery-electric top handlers and one battery-electric yard tractor, as well as two baseline diesel top handlers and one diesel yard tractor. The battery-electric equipment typically operated about 5 hours per day, while using between 34 to 50% of the battery pack state of charge (SOC). In general, the battery-electric equipment was able to provide comparable hours of operation to the diesel equipment over a typical 8-hour shift.
Technical Paper

Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends

2014-10-13
2014-01-2768
The relationship between ethanol and iso-butanol fuel concentrations and vehicle particulate matter emissions was investigated. This study utilized a gasoline direct injection (GDI) flexible fuel vehicle (FFV) with wall-guided fueling system tested with four fuels, including E10, E51, E83, and an iso-butanol blend at a proportion of 55% by volume. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer with an emphasis on the physical and chemical characterization of particulate matter (PM) emissions. The results indicated that the addition of higher ethanol blends and the iso-butanol blend resulted in large reductions in PM mass, soot, and total and solid particle number emissions. PM emissions for the baseline E10 fuel were characterized by a higher fraction of elemental carbon (EC), whereas the PM emissions for the higher ethanol blends were more organic carbon (OC) in nature.
Technical Paper

Determination of Suspended Exhaust PM Mass for Light-Duty Vehicles

2014-04-01
2014-01-1594
This study provides one of the first evaluations of the integrated particle size distribution (IPSD) method in comparison with the current gravimetric method for measuring particulate matter (PM) emissions from light-duty vehicles. The IPSD method combines particle size distributions with size dependent particle effective density to determine mass concentrations of suspended particles. The method allows for simultaneous determination of particle mass, particle surface area, and particle number concentrations. It will provide a greater understanding of PM mass emissions at low levels, and therefore has the potential to complement the current gravimetric method at low PM emission levels. Six vehicles, including three gasoline direct injected (GDI) vehicles, two port fuel injected (PFI) vehicles, and one diesel vehicle, were tested over the Federal Test Procedure (FTP) driving cycle on a light-duty chassis dynamometer.
Technical Paper

Reduction of Exposure to Air Pollutants with Map-Based Cabin Air Control

2023-04-11
2023-01-0139
More than a hundred million Air Quality Sensors (AQS) have been used since the late 80s to improve in-cabin air quality on high-end cars. This is more than a billion dollars spent. A study conducted in two major cities (USA & Europe) showed that a novel method based on high-resolution air quality maps outperforms the use of on-board AQS. The total passenger exposure to pollution was compared for several flap management algorithm cases: flap always open, random open/close, map-based algorithm, and AQS-based algorithm. The results are likely to disrupt the AQS market since the map-based method is a pure software solution with lower cost per vehicle than the sensor itself. The data volume used to calculate the air quality maps was sufficient to obtain good average correlations between individual trip pollution profiles and the map Air Quality Indices (AQI) along the trip path.
Technical Paper

Electric Vehicle Modeling: Advanced Torque Split Analysis across Different Architectures

2024-04-09
2024-01-2166
The proliferation of electric vehicles (EVs) is resulting in a big transition in the automotive industry, with the goal of reducing greenhouse gas emissions and improving energy efficiency. There are a variety of different architectural configurations and power distribution strategies that can be optimized for drivability performance, all-electric range, and overall efficiency. This paper describes the efforts of the research team in exploring different EV architectures to better understand their impacts on system performance in terms of energy efficiency and vehicle drivability. In search for an ideal powertrain architecture for a shared-use EV, the research team conducted a comprehensive analysis of a various EV architectures (including RWD and AWD) with different motor parameters, considering a spectrum of targeted vehicle technology specifications such as acceleration and braking performance, and fuel economy.
X