Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

On-Road Real-Time Hyper-Local Air Quality Monitoring Based on Mobile IoT Enabled by a Network of Vehicles Equipped with Air Quality Sensors

2023-04-11
2023-01-0049
People are exposed to disproportionately high concentrations of air pollutants daily on and near the road during their ride, walk, and residency. Currently air quality monitoring is performed mostly at background locations far away from the road and distinctive point, line, and area emission sources, failing to report concentrations on the road. This study presents an innovative air quality monitoring method using a network of vehicles equipped with air quality sensors (AQSs). Vehicles are connected to internet through either cell link or apps used by drivers. A cloud server collects the data and updates air quality concentration maps every 10 minutes. The study presents very high temporal and spatial resolution maps at a fraction of the cost of previous studies.
Journal Article

Performance and Activity Characteristics of Zero Emission Battery-Electric Cargo Handling Equipment at a Port Terminal

2022-03-29
2022-01-0576
Goods movement and port related activities are a significant source of emissions in many large urban areas. Electrification of diesel cargo handling equipment is one method of reducing community exposure to these emissions, that also provides the potential for reducing greenhouse gas emissions. This study evaluated the performance of several pieces of zero emission cargo transfer equipment for a demonstration conducted at two terminal locations at the Port of Long Beach (POLB). This included the data logging of three battery-electric top handlers and one battery-electric yard tractor, as well as two baseline diesel top handlers and one diesel yard tractor. The battery-electric equipment typically operated about 5 hours per day, while using between 34 to 50% of the battery pack state of charge (SOC). In general, the battery-electric equipment was able to provide comparable hours of operation to the diesel equipment over a typical 8-hour shift.
Technical Paper

Electric Vehicle Modeling: Advanced Torque Split Analysis across Different Architectures

2024-04-09
2024-01-2166
The proliferation of electric vehicles (EVs) is resulting in a big transition in the automotive industry, with the goal of reducing greenhouse gas emissions and improving energy efficiency. There are a variety of different architectural configurations and power distribution strategies that can be optimized for drivability performance, all-electric range, and overall efficiency. This paper describes the efforts of the research team in exploring different EV architectures to better understand their impacts on system performance in terms of energy efficiency and vehicle drivability. In search for an ideal powertrain architecture for a shared-use EV, the research team conducted a comprehensive analysis of a various EV architectures (including RWD and AWD) with different motor parameters, considering a spectrum of targeted vehicle technology specifications such as acceleration and braking performance, and fuel economy.
X