Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Overall Transmission Error Calculation of Differential Gear

2021-08-31
2021-01-1101
Overall transmission error (OTE) of gear system has been a main focus of gear dynamics study. The input-output transmission error (TE) depends heavily on mesh phasing conditions. Only reducing loaded transmission error (LTE) of a single gear mesh is not enough to ensure good NVH performance in a multiple gear mesh system. In order to predict OTE during bevel gear design instead of just analyzing single mesh TE, a new bevel gear OTE calculation method will be presented in this study. Based on single mesh parameters including loaded and unloaded TE or mesh stiffness, the OTE of a differential gear set can be calculated without building a complete system model. The effect of phasing on system OTE shows that different tooth combination can have significant effect on dynamic performance which should be considered during design.
Technical Paper

Driveline NVH Integration of An NA Truck Program

2019-06-05
2019-01-1559
In the current automotive industry, it is common that the driveline subsystem and components are normally from different automotive suppliers for OEMs. In order to ensure proper system integration and successful development of driveline system NVH performances, collaboration efforts between OEMs and suppliers are very demanding and important. In this paper, a process is presented to achieve successfulness in developing and optimizing vehicle integration through effective teamwork between a driveline supplier and a major OEM. The development process includes multiple critical steps. They include target development and roll down, targets being specific and measurable, comprehension of interactions of driveline and vehicle dynamics, accurate definition of sensitivity, proper deployment of modal mapping strategy, which requires open data sharing; and system dynamics and optimization.
Technical Paper

Design Optimization of Differential Bevel Gear for NVH Improvement

2019-06-05
2019-01-1552
With fast pacing development of automobile industry and growing needs for better driving experience, NVH performance has become an important aspect of analysis in new driveline product development especially in hybrid and electric powered vehicles. Differential bevel gear has significant role in the final drive. Unlike parallel axis gears such as spur or helical gear, bevel gear mesh shows more complicated characteristics and its mesh parameters are mostly time-varying which calls for more extensive design and analysis. The purpose of this paper is to conduct design study on a differential bevel gear unit under light torque condition and evaluate its NVH characteristics. Unloaded tooth contact analysis (UTCA) of those designs are conducted and compared for several design cases with different micro geometry to investigate their pattern position and size variation effects on NVH response.
X