Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

The Lotus Range Extender Engine

2010-10-25
2010-01-2208
The paper discusses the concept, specification and performance of a new, dedicated range extender engine for plug-in series hybrid vehicles conceived and designed by Lotus Engineering. This has been undertaken as part of a consortium project called Limo Green, part-funded by the UK government. The Lotus Range Extender engine has been conceived from the outset specifically as an engine for a plug-in series hybrid vehicle, therefore being free of some of the constraints placed on engines which have to mate to conventional, stepped mechanical transmissions. The paper starts by defining the philosophical difference between an engine for range extension and an engine for a full series hybrid vehicle, a distinction which is important with regard to how much power each type must produce. As part of this, the advantages of the sparkignition engine over the diesel are outlined.
Journal Article

Project Sabre: A Close-Spaced Direct Injection 3-Cylinder Engine with Synergistic Technologies to Achieve Low CO2 Output

2008-04-14
2008-01-0138
The paper describes the design and development of ‘Sabre’, a 3-cylinder engine encompassing a combination of technologies to realise low CO2 in a practical automotive application while retaining driving pleasure (vehicle acceleration performance). This project is a partnership with Continental Automotive, in which Lotus Engineering is responsible for the base engine and combustion system. The decision process that led to a close-spaced direct injection combustion system that does not target high BMEP as the chief route to low fuel consumption is described. Instead of pursuing an approach in which specific power is maximized in order to reduce throttling losses at part load, mild downsizing coupled with throttling loss reduction and turbulence manipulation enabled by a switching valve train is employed.
Technical Paper

Effects of Cooled EGR Routing on a Second-Generation DISI Turbocharged Engine Employing an Integrated Exhaust Manifold

2009-04-20
2009-01-1487
The work reports results from tests employing different cooled EGR routes on a ‘Sabre’ direct-injection spark-ignition (DISI) research engine. As standard, this engine has been configured to provide good fuel consumption from a combination of mild downsizing, a combustion system with close-spaced injection and the adoption of a three-cylinder configuration in concert with an exhaust manifold integrated into the cylinder head. This has already been shown to offer a rated power specific fuel consumption of 272 g/kWh without cooled EGR. Three different EGR configurations are tested, with the best BSFC at nominal rated conditions being found to be 257-258 g/kWh at a cooled EGR rate of 6%. All of the EGR routing configurations tested in this work permit ready operation of the engine at Lambda 1 and MBT conditions, however, the results show little sensitivity in the combustion system to the actual routing employed.
Technical Paper

Improving Fuel Economy in a Turbocharged DISI Engine Already Employing Integrated Exhaust Manifold Technology and Variable Valve Timing

2008-10-06
2008-01-2449
Many new technologies are being developed to improve the fuel consumption of gasoline engines, including the combination of direct fuel injection with turbocharging in a so-called ‘downsizing’ approach. In such spark ignition engines operating on the Otto cycle, downsizing targets a shift in the operating map such that the engine is dethrottled to a greater extent during normal operation, thus reducing pumping losses and improving fuel consumption. However, even with direct injection, the need for turbine protection fuelling at high load in turbocharged engines - which is important for customer usage on faster European highways such as German Autobahns - brings a fuel consumption penalty over a naturally-aspirated engine in this mode of operation.
Technical Paper

Modelling Engines with Pulse Converted Exhaust Manifolds Using One-Dimensional Techniques

2000-03-06
2000-01-0290
One-dimensional ‘wave-action’ codes are widely used by internal combustion engine manufacturers. However, the modelling of multi-pipe junctions within such simulations presents a problem, since the geometry of the junctions cannot be represented fully using a one-dimensional approach, and it can produce a strongly directional effect on the propagated waves. ‘Pressure-loss’ models of junctions have been devised as boundary conditions for one-dimensional simulations, these allow the some geometry induced effects to be introduced into the calculation. This paper examines the performance of such models, when used to simulate a pulse converter-type junction, under unsteady flow conditions.
Technical Paper

Steady-Flow Loss-Coefficient Estimation for Exhaust Manifold Pulse-Converter Type Junctions

1999-03-01
1999-01-0213
Computer programs to simulate the gas dynamics of internal combustion engines are commonly used by manufacturers to aid optimization. These programs are typically one-dimensional and complex flow features are included as ‘special’ boundaries. One such boundary is the ‘pressure-loss’ junction model, which allows the inclusion of directionality effects brought about by the geometry of a manifold junction. The pressure-loss junction model requires empirical, steady-flow pressure-loss data, which is both time consuming and expensive to obtain, and also requires the junction to be manufactured before its performance can be established. This paper presents a technique for estimating the steady-flow data, thus obviating the need to perform these flow-tests.
X