Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

The Lotus Range Extender Engine

2010-10-25
2010-01-2208
The paper discusses the concept, specification and performance of a new, dedicated range extender engine for plug-in series hybrid vehicles conceived and designed by Lotus Engineering. This has been undertaken as part of a consortium project called Limo Green, part-funded by the UK government. The Lotus Range Extender engine has been conceived from the outset specifically as an engine for a plug-in series hybrid vehicle, therefore being free of some of the constraints placed on engines which have to mate to conventional, stepped mechanical transmissions. The paper starts by defining the philosophical difference between an engine for range extension and an engine for a full series hybrid vehicle, a distinction which is important with regard to how much power each type must produce. As part of this, the advantages of the sparkignition engine over the diesel are outlined.
Journal Article

Project Sabre: A Close-Spaced Direct Injection 3-Cylinder Engine with Synergistic Technologies to Achieve Low CO2 Output

2008-04-14
2008-01-0138
The paper describes the design and development of ‘Sabre’, a 3-cylinder engine encompassing a combination of technologies to realise low CO2 in a practical automotive application while retaining driving pleasure (vehicle acceleration performance). This project is a partnership with Continental Automotive, in which Lotus Engineering is responsible for the base engine and combustion system. The decision process that led to a close-spaced direct injection combustion system that does not target high BMEP as the chief route to low fuel consumption is described. Instead of pursuing an approach in which specific power is maximized in order to reduce throttling losses at part load, mild downsizing coupled with throttling loss reduction and turbulence manipulation enabled by a switching valve train is employed.
Technical Paper

Alcohol-Based Fuels in High Performance Engines

2007-01-23
2007-01-0056
The paper discusses the use of alcohol fuels in high performance pressure-charged engines such as are typical of the type being developed under the ‘downsizing’ banner. To illustrate this it reports modifications to a supercharged high-speed sports car engine to run on an ethanol-based fuel (ethanol containing 15% gasoline by volume, or ‘E85’). The ability for engines to be able to run on alcohol fuels may become very important in the future from both a global warming viewpoint and that of security of energy supply. Additionally, low-carbon-number alcohol fuels such as ethanol and methanol are attractive alternative fuels because, unlike gaseous fuels, they can be stored relatively easily and the amount of energy that can be contained in the vehicle fuel tank is relatively high (although still less than when using gasoline).
Technical Paper

Effects of Cooled EGR Routing on a Second-Generation DISI Turbocharged Engine Employing an Integrated Exhaust Manifold

2009-04-20
2009-01-1487
The work reports results from tests employing different cooled EGR routes on a ‘Sabre’ direct-injection spark-ignition (DISI) research engine. As standard, this engine has been configured to provide good fuel consumption from a combination of mild downsizing, a combustion system with close-spaced injection and the adoption of a three-cylinder configuration in concert with an exhaust manifold integrated into the cylinder head. This has already been shown to offer a rated power specific fuel consumption of 272 g/kWh without cooled EGR. Three different EGR configurations are tested, with the best BSFC at nominal rated conditions being found to be 257-258 g/kWh at a cooled EGR rate of 6%. All of the EGR routing configurations tested in this work permit ready operation of the engine at Lambda 1 and MBT conditions, however, the results show little sensitivity in the combustion system to the actual routing employed.
Technical Paper

The Omnivore Wide-range Auto-Ignition Engine: Results to Date using 98RON Unleaded Gasoline and E85 Fuels

2010-04-12
2010-01-0846
Omnivore is a single cylinder spark ignition based research engine conceived to maximize the operating range of auto-ignition on a variety of fossil and renewable fuels. In order to maximize auto-ignition operation, the two-stroke cycle was adopted with two independent mechanisms for control. The charge trapping valve system is incorporated as a means of varying the quantity of trapped residuals whilst a variable compression ratio mechanism is included to give independent control over the end of compression temperature. The inclusion of these two technologies allows the benefits of trapped residual gas to be maximised (to minimize NOx formation) whilst permitting variation of the onset of auto-ignition. 2000rpm and idle are the main focus of concern whilst also observing the influence of injector location. This paper describes the rational behind the engine concept and presents the results achieved at the time of writing using 98ulg and E85 fuels.
Technical Paper

New Operating Strategies Afforded by Fully Variable Valve Trains

2004-03-08
2004-01-1386
Electrohydraulic and electromechanical valve train technologies for four-stroke engines are emerging which allow much greater flexibility and control of the valve events than can be achieved using mechanically-based systems. Much of the work done on exploiting the benefits of these systems has been directed towards improving engine fuel economy and reducing emissions. In the present work a study has been made, using an engine simulation program, in to some of the possible benefits to engine performance that may be facilitated by the flexibility of fully variable valve train (FVVT) systems. The simulation study indicates that FVVT systems, limited by realistic opening and closing rates, provide sufficient range in the valve event duration and timing to enable the engine to produce very high specific outputs whilst achieving a high level of torque in the low- and mid-speed range.
Technical Paper

GEM Ternary Blends of Gasoline, Ethanol and Methanol: An Initial Investigation into Fuel Spray and Combustion Characteristics in a Direct-Injected Spark-Ignition Optical Engine Using Mie Imaging

2012-09-10
2012-01-1740
Five different fuels, including gasoline, commercial E85, pure methanol and two mixtures of gasoline, ethanol and methanol, (GEM), configured to a target stoichiometric air fuel ratio have been investigated in a fully-optically-accessed engine. The work investigated effects of injection duration, and performed spray imaging, thermodynamic analysis of the combustion and OH imaging, for two fixed engine conditions of 2.7 and 3.7 bar NMEP at 2000 rpm. The engine was operated with constant ignition timing for all fuels and both loads. One of the most important results from this study was the suitability of a single type of injector to handle all the fuels tested. There were differences observed in the spray morphology between the fuels, due to the different physical properties of the fuels. The energy utilisation measured in this study showed differences of up to 14% for the different GEM fuels whereas an earlier in-vehicle study had showed only 2 to 3%.
Technical Paper

A Multi-Pipe Junction Model for One-Dimensional Gas-Dynamic Simulations

2003-03-03
2003-01-0370
Computer programs that simulate the wave propagation phenomena involved in manifold tuning mechanisms are used extensively in the design and development of internal combustion engines. Most comprehensive engine simulation programs are based on the governing equations of one-dimensional gas flow as these provide a reasonable compromise between modelling accuracy and computational speed. The propagation of pressure waves through pipe junctions is, however, an intrinsically multi-dimensional phenomenon. The modelling of such junctions within a one-dimensional simulation represents a major challenge, since the geometry of the junction cannot be fully represented but can have a major influence on the flow. This paper introduces a new pressure-loss junction model which can mimic the directionality imposed by the angular relationship of the pipes forming a multi-pipe junction. A simple technique for estimating the pressure-loss data required by the model is also presented.
Technical Paper

Enlarging the Operational Range of a Gasoline HCCI Engine By Controlling the Coolant Temperature

2005-04-11
2005-01-0157
The Homogeneous Charge Compression Ignition (HCCI) engine combustion uses heat energy from trapped exhaust gases enhanced by the piston compression heating to auto ignite a premixed air/gasoline mixture. As the HCCI combustion is controlled by the charge temperature, composition and pressure, it therefore, prevents the use of a direct control mechanism such as in the spark and diesel combustion. Using a large amount of trapped residual gas (TRG), is seen as one of the ways to achieve and control HCCI in a certain operating range. By varying the amount of TRG in the fresh air/fuel mixture (inside the cylinder), the charge mixture temperature, composition and pressure can be controlled and hence, the auto ignition timing and heat release rate. The controlled auto ignition (HCCI) engine concept has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions.
Technical Paper

Multi-Dimensional Wave Propagation in Pipe Junctions

1999-03-01
1999-01-1186
The propagation of pressure waves through junctions in engine manifolds is an intrinsically multi-dimensional phenomenon. In the present work an inviscid two-dimensional model has been applied to the simulation of shock-wave propagation through 45° and 90° junctions: the results are compared with schlieren images and measured pressure-time histories. The HLLC integral state Riemann solver is used in a shock-capturing finite volume scheme, with second-order accuracy achieved via slope limiters. The model can successfully predict the evolution of the wave fronts through the junctions and the high frequency pressure oscillations induced by the transverse reflections. The calculation time is such as to make it feasible for inclusion, as a local multi-dimensional region, within a one-dimensional wave-action engine simulation.
Technical Paper

Steady-Flow Loss-Coefficient Estimation for Exhaust Manifold Pulse-Converter Type Junctions

1999-03-01
1999-01-0213
Computer programs to simulate the gas dynamics of internal combustion engines are commonly used by manufacturers to aid optimization. These programs are typically one-dimensional and complex flow features are included as ‘special’ boundaries. One such boundary is the ‘pressure-loss’ junction model, which allows the inclusion of directionality effects brought about by the geometry of a manifold junction. The pressure-loss junction model requires empirical, steady-flow pressure-loss data, which is both time consuming and expensive to obtain, and also requires the junction to be manufactured before its performance can be established. This paper presents a technique for estimating the steady-flow data, thus obviating the need to perform these flow-tests.
Technical Paper

Visual Analyses of End of Injection Liquid Structures and the Behaviour of Nozzle Surface-Bound Fuel in a Direct Injection Diesel Engine

2019-01-15
2019-01-0059
For efficiency, the majority of modern diesel engines implement multiple injection strategies, increasing the frequency of transient injection phases and thus, end of injection (EOI) events. Recent advances in diagnostic techniques have identified several EOI phenomena pertinent to nozzle surface wetting as a precursor for deposit formation and a potential contributor towards pollutant emissions. To investigate the underlying processes, highspeed optical measurements at the microscopic scale were performed inside a motored diesel engine under low load/idling conditions. Visualisation of the injector nozzle surface and near nozzle region permitted an indepth analysis of the post-injection phenomena and the behaviour of fuel films on the nozzle surface when the engine is not fired. Inspection of the high-speed video data enabled an interpretation of the fluid dynamics leading to surface wetting, elucidating the mechanisms of deposition and spreading.
Technical Paper

CO2 Emission Reduction Synergies of Advanced Engine Design and Fuel Octane Number

2014-10-13
2014-01-2610
Engine downsizing is a key approach employed by many vehicle manufacturers to help meet fleet average CO2 emissions targets. With gasoline engines in particular reducing engine swept volume while increasing specific output via technologies such as turbocharging, direct injection (DI) and variable valve timing can significantly reduce frictional and pumping losses in engine operating areas commonly encountered in legislative drive cycles. These engines have increased susceptibility to abnormal combustion phenomena such as knock due to the high brake mean effective pressures which they generate. This ultimately limits fuel efficiency benefits by demanding use of a lower geometric compression ratio and sub-optimal late combustion phasing at the higher specific loads experienced by these engines.
Technical Paper

Tribological Behavior of Low Viscosity Lubricants in the Piston to Bore Zone of a Modern Spark Ignition Engine

2014-10-13
2014-01-2859
Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselization. There is now increased focus on approaches which give smaller but significant incremental efficiency benefits such as reducing parasitic losses due to engine friction. Fuel economy improvements which achieve this through the development of advanced engine lubricants are very attractive to vehicle manufacturers due to their favorable cost-benefit ratio. For an engine with components which operate predominantly in the hydrodynamic lubrication regime, the most significant lubricant parameter which can be changed to improve the tribological performance of the system is the lubricant viscosity.
X