Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Iso-Stoichiometric Ternary Blends of Gasoline, Ethanol and Methanol: Investigations into Exhaust Emissions, Blend Properties and Octane Numbers

2012-09-10
2012-01-1586
Iso-stoichiometric ternary blends - in which three-component blends of gasoline, ethanol and methanol are configured to the same stoichiometric air-fuel ratio as an equivalent binary ethanol-gasoline blend - can function as invisible "drop-in" fuels suitable for the existing E85/gasoline flex-fuel vehicle fleet. This has been demonstrated for the two principal means of detecting alcohol content in such vehicles, which are considered to be a virtual, or software-based, sensor, and a physical sensor in the fuel line. Furthermore when using such fuels the tailpipe CO₂ emissions are essentially identical to those found when the vehicle is operated on E85. Because of the fact that methanol can be made from a wider range of feed stocks than ethanol and at a cheaper price, these blends then provide opportunities to improve energy security, to reduce greenhouse gas emissions and to produce a fuel blend which could potentially be cheaper on a cost-per-unit-energy basis than gasoline or diesel.
Technical Paper

Extending the Supply of Alcohol Fuels for Energy Security and Carbon Reduction

2009-11-02
2009-01-2764
The paper critiques proposals for de-carbonizing transport and offers a potential solution which may be attained by the gradual evolution of the current fleet of predominantly low-cost vehicles via the development of carbon-neutral liquid fuels. The closed-carbon cycles which are possible using such fuels offer the prospect of maintaining current levels of mobility with affordable transport whilst neutralizing the threat posed by the high predicted growth of greenhouse gas emissions from this sector. Approaches to de-carbonizing transport include electrification and the adoption of molecular hydrogen as an energy carrier. These two solutions result in very expensive vehicles for personal transport which mostly lie idle for 95% of their life time and are purchased with high-cost capital.
Technical Paper

Reduction of CO2 Emissions through Lubricant Thermal Management During the Warm Up of Passenger Car Engines

2016-04-05
2016-01-0892
Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselisation. There is now increased focus on approaches which give smaller, but significant incremental efficiency benefits, such as reducing parasitic losses due to engine friction. The reduction in tail pipe CO2 emissions through the reduction of engine friction using lubricants has been reported by many authors. However, opportunities also exist to reduce the lubricant viscosity during warm up by the thermal management of the lubricant mass.
Technical Paper

Tribological Behavior of Low Viscosity Lubricants in the Piston to Bore Zone of a Modern Spark Ignition Engine

2014-10-13
2014-01-2859
Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselization. There is now increased focus on approaches which give smaller but significant incremental efficiency benefits such as reducing parasitic losses due to engine friction. Fuel economy improvements which achieve this through the development of advanced engine lubricants are very attractive to vehicle manufacturers due to their favorable cost-benefit ratio. For an engine with components which operate predominantly in the hydrodynamic lubrication regime, the most significant lubricant parameter which can be changed to improve the tribological performance of the system is the lubricant viscosity.
X