Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Effect of Impact-Triggered Automatic Braking in Multiple Impact Crashes

2012-04-16
2012-01-1181
This study proposes an impact-triggered automatic braking system as a potential safety improvement based on the characteristics of the Multiple Impact Crashes (MICs). The system activates with a signal of airbag deployment in a collision to reduce the vehicle speed in the subsequent collisions. The effectiveness was estimated by an in-depth review of the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS). The cases were extracted on the basis of the 3-point lap and shoulder belted occupants, incurring Maximum Abbreviated Injury Scale level 3 to 6 injuries (MAIS 3+), in the crashes occurred from 2004 to 2006, without vehicle rollover or occupant ejection, where the involved vehicles were 2000 and newer model year cars and light trucks.
X