Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Phenomenological Modelling of Oxygen-Enriched Combustion and Pollutant Formation in Heavy-Duty Diesel Engines using Exhaust Gas Recirculation

2012-09-10
2012-01-1725
A theoretical study is conducted to examine the effects of oxygen enrichment of intake air and exhaust gas recirculation (EGR) on heavy-duty (HD) diesel engine performance characteristics and pollutant emissions. A phenomenological multi-zone model was properly modified and used to assess the impact of intake air oxygen-enhancement and EGR on the operating and environmental behavior of a HD diesel engine under various operating conditions. Initially, an experimental validation was performed to assess the predictive ability of the multi-zone model using existing data from a HD turbocharged common-rail diesel engine at the 12 operating points of the European Stationary Cycle (ESC) considering certain high-pressure cooled EGR rate at each operating point.
Technical Paper

Potentiality for Optimizing Operational Performance and Thermal Management of Diesel Truck Engine Rankine Cycle by Recovering Heat in EGR Cooler

2010-04-12
2010-01-0315
Further reduction of brake specific fuel consumption (bsfc) in heavy-duty diesel engines, which are used for vehicle applications, is of utmost importance due to high fuel prices, global warming issue (CO₂ emissions) and continuously stringent environmental regulations. Specifically, the necessity for further reduction of specific diesel oil consumption and increase of vehicle mileage, respectively, is more pronounced in large haul diesel trucks due to technical, environmental and economical reasons. Heavy-duty (HD) direction injection (DI) diesel engines are used in these vehicles, which indicate a rather high power output in the range of 200-400 kW. During recent years, various measures have been proposed from engine manufacturers and researchers for improving combustion process and through that, increasing the fuel economy of diesel engines.
Technical Paper

Identification of the Error Introduced in DI Diesel Engine Phenomenological Multi-Zone Models from Assumptions Related to the Initial Conditions at the Nozzle Exit

2010-04-12
2010-01-0153
The past decade significant research effort has concentrated on the DI diesel engine due to stringent future emission legislation which requires drastic reduction of engine tail pipe pollutant emissions, mainly PM and NOx, without significant deterioration of specific fuel consumption. Towards this effort, the important role of modeling to investigate and understand the impact of various internal measures on combustion and emissions has been widely recognized. Phenomenological models can significantly contribute towards this direction because they have acceptable prediction capability and the advantage of low computational time. This enables the production of results, on a cycle basis, that indicate the effect of various parameters on both engine performance and emissions. Therefore their use can significantly reduce engine development time (i.e. reduction of experimental effort) and cost.
Technical Paper

Evaluation of an Advanced Diagnostic Technique for the Determination of Diesel Engine Condition and Tuning Based on Laboratory Measurements

2010-04-12
2010-01-0154
In the present work is presented a detailed evaluation of an advanced diagnostic technique, developed by the authors, for the determination of diesel engine condition and tuning. For this purpose, an extended experimental investigation has been conducted on a prototype test engine installed in the author's laboratory. During the measurements various operating parameters (i.e. torque, fuel consumption, injection pressure, cylinder pressure, peripheral temperatures etc.) have been recorded at various operating conditions (i.e. engine speed and loads). Initially the engine operated at its normal conditions (i.e. reference state). Then, two “virtual” faults (i.e. reduction of injector opening pressure and increase of cylinder mass leakage) were introduced, that affected engine operation.
X