Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Simulation Model for the Combustion Process of Natural Gas Engines with Pilot Diesel Fuel as an Ignition Source

2001-03-05
2001-01-1245
During the last years a great deal of efforts have been made to reduce pollutant emissions from Direct Injection Diesel Engines. The use of gaseous fuel as a supplement for liquid diesel fuel seems to be one solution towards these efforts. One of the fuels used is natural gas, which has a relatively high auto - ignition temperature and moreover it is an economical and clean burning fuel. The high auto - ignition temperature of natural gas is a serious advantage against other gaseous fuels since the compression ratio of most conventional diesel engines can be maintained. The main aspiration from the usage of dual fuel (liquid and gaseous one) combustion systems, is the reduction of particulate emissions. In the present work are given results of a theoretical investigation using a model developed for the simulation of gaseous fuel combustion processes in Dual Fuel Engines.
Technical Paper

Theoretical and Experimental Investigation of a Direct Injection Dual Fuel Diesel-Natural Gas Engine

2002-03-04
2002-01-0868
The compression ignition engine of the dual fuel type has been employed in a wide range of applications to utilize various gaseous fuel resources while minimizing soot and oxides of nitrogen emissions without excessive increase in cost from that of conventional direct injection diesel engines. The use of natural gas as a supplement for liquid diesel fuel could be a solution towards the efforts of an economical and clean burning operation. The high auto-ignition temperature of natural gas is a serious advantage since the compression ratio of most conventional diesel engines can be maintained. In the present work a comparison between experimental and theoretical results is presented under dual fuel operation. For the theoretical investigation a computer simulation model has been developed which simulates the gaseous fuel combustion processes in dual fuel engines.
Technical Paper

Development of a Simulation Model for Direct Injection Dual Fuel Diesel-Natural Gas Engines

2000-03-06
2000-01-0286
During the last years a great deal of effort has been made for the reduction of pollutant emissions from direct injection Diesel Engines. Towards these efforts engineers have proposed various solutions, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines are referred to as dual combustion engines i.e. they use conventional diesel fuel and gaseous fuel as well. The ignition of the gaseous fuel is accomplished through the liquid fuel, which is auto-ignited in the same way as in common diesel engines. One of the fuels used is natural gas, which has a relatively high auto-ignition temperature. This is extremely important since the CR of most conventional diesel engines can be maintained. In these engines the released energy is produced partially from the combustion of natural gas and from the combustion of liquid diesel fuel.
Technical Paper

Combustion and Performance Characteristics of a DI Diesel Engine Operating from Low to High Natural Gas Supplement Ratios at Various Operating Conditions

2008-04-14
2008-01-1392
The compression ignition engine of the dual fuel type has been employed in a wide range of applications utilizing various gaseous fuel resources, while minimizing soot and nitric oxide emissions without excessive increase in cost against that of the conventional direct injection diesel engine. Fumigated dual fuel compression ignition engines are divided into two main groups: the conventional dual fuel engines where part of the liquid fuel is replaced by gaseous one and the pilot ignited ones where a pilot amount of the liquid fuel is used as an ignition source. Due to the high auto-ignition temperature of the natural gas, it can be used as a supplement for the liquid diesel fuel in conventional diesel engines operating under dual fuel mode. Moreover, the use of natural gas as a supplement for the liquid diesel fuel could be a solution towards the efforts of an economical and clean burning operation.
X