Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Identification of the Error Introduced in DI Diesel Engine Phenomenological Multi-Zone Models from Assumptions Related to the Initial Conditions at the Nozzle Exit

2010-04-12
2010-01-0153
The past decade significant research effort has concentrated on the DI diesel engine due to stringent future emission legislation which requires drastic reduction of engine tail pipe pollutant emissions, mainly PM and NOx, without significant deterioration of specific fuel consumption. Towards this effort, the important role of modeling to investigate and understand the impact of various internal measures on combustion and emissions has been widely recognized. Phenomenological models can significantly contribute towards this direction because they have acceptable prediction capability and the advantage of low computational time. This enables the production of results, on a cycle basis, that indicate the effect of various parameters on both engine performance and emissions. Therefore their use can significantly reduce engine development time (i.e. reduction of experimental effort) and cost.
Technical Paper

Validation of a Newly Developed Quasi-Dimensional Combustion Model - Application on a Heavy Duty DI Diesel Engine

2004-03-08
2004-01-0923
This work is a part of an extended investigation conducted by the authors to validate and improve a newly developed quasi-dimensional combustion model. The model has been initially applied on an old technology, naturally aspirated HSDI Diesel engine and the results were satisfying as far as performance and pollutant emissions (Soot and NO) are concerned. But since obviously further and more extended validation is required, in the present study the model is applied on a new technology, heavy-duty turbocharged DI Diesel engine equipped with a high pressure PLN fuel injection system. The main feature of the model is that it describes the air-fuel mixing mechanism in a more fundamental way compared to existing multi-zone phenomenological combustion models, while being less time consuming and complicated compared to the more accurate CFD models. The finite volume method is used to solve the conservation equations of mass, energy and species concentration.
Technical Paper

Some Considerations on the Estimation of the Heat Release of DI Diesel Engines Using Modelling Techniques

2004-03-08
2004-01-1405
Simulation models are widely used from research engineers to investigate the combustion mechanism of DI diesel engines. These models can be used, as tools to either comprehend information provided by experimental data or to perform predictions and assist the development process. As widely recognized a valuable source of information for engine performance and emissions studies is the cylinder pressure trace. It can provide after processing information concerning the combustion rate of fuel injected inside the combustion chamber. Often it is also used to calibrate simulation models or even to derive correlations to represent the combustion rate of fuel inside the combustion chamber. The present research team has during the development process of a simulation model for the description of DI diesel engine performance and emissions realized that there exists a serious problem.
Technical Paper

A Simplified Model for the Spatial Distribution of Temperature in a Motored DI Diesel Engine

2001-03-05
2001-01-1235
The purpose of this paper is to present an alternative method to predict the temperature and flow field in a motored internal combustion engine with bowl in piston. For the fluid flow it is used a phenomenological model which is coupled to a computational fluid dynamic method to solve the energy conservation equation and therefore the temperature field. The proposed method has the advantage of simplicity and low computational time. The computational procedure solves the energy conservation equation by a finite volume method, using a simplified air motion model (estimating axial and radial velocities) to calculate the flow field. The finite volume discretization employs the implicit temporal and hybrid central upwind spatial differencing. The grid used contracts and expands following the piston motion, and the number of nodes in the direction of piston motion vary depending on the crank angle.
Technical Paper

The Effect of EGR on the Performance and Pollutant Emissions of Heavy Duty Diesel Engines Using Constant and Variable AFR

2001-03-05
2001-01-0198
Pollutant emissions and specifically NO and soot are one of the most important problems that engineers have to face when developing heavy duty DI diesel engines. Two main strategies exist as options for their control, reduction inside the engine cylinder using advanced combustion and fuel injection technologies and use of after-treatment systems. In the present work it is examined the use of EGR to control the formation of NO inside the cylinder of an engine with extremely high peak pressure. The work is applied on a single cylinder truck test engine developed under a project funded by the European Community focusing on the improvement of heavy duty DI diesel engine efficiency using increased injection timing. Use is made of a simulation model to predict the effect of more advanced injection timing on engine performance and emissions. The model has been modified to include the effect of EGR used to c ontrol the formation of NO which is considerably increased at high injection timings.
Technical Paper

Using a Phenomenological Multi-Zone Model to Investigate the Effect of Injection Rate Shaping on Performance and Pollutants of a DI Heavy Duty Diesel Engine

2002-03-04
2002-01-0074
The direct injection heavy-duty diesel engine is the main propulsion unit for trucks, lories and other heavy-duty vehicles mainly due to its superior efficiency when compared to other existing reciprocating engines. However, this engine suffers from relatively high particulate and nitric oxide emission levels. Considering current legislation for emissions and especially future limits, it seems that a great deal of research is required to satisfy these limits and maintain efficiency at a high level. As widely recognized, the fuel injection mechanism plays an important role for both engine performance and pollutant emissions. The major problem is to seek solutions that enable the control of major pollutants, nitric oxide and particulate matter. For this reason, various injection rate shapes have been proposed which require sophisticated fuel injection equipment and extremely high fuel injection pressures. Now two main categories are considered, common rail fuel injection system and PLN.
Technical Paper

Theoretical and Experimental Investigation of a Direct Injection Dual Fuel Diesel-Natural Gas Engine

2002-03-04
2002-01-0868
The compression ignition engine of the dual fuel type has been employed in a wide range of applications to utilize various gaseous fuel resources while minimizing soot and oxides of nitrogen emissions without excessive increase in cost from that of conventional direct injection diesel engines. The use of natural gas as a supplement for liquid diesel fuel could be a solution towards the efforts of an economical and clean burning operation. The high auto-ignition temperature of natural gas is a serious advantage since the compression ratio of most conventional diesel engines can be maintained. In the present work a comparison between experimental and theoretical results is presented under dual fuel operation. For the theoretical investigation a computer simulation model has been developed which simulates the gaseous fuel combustion processes in dual fuel engines.
Technical Paper

A New Quasi-Three Dimensional Combustion Model for Prediction of DI Diesel Engines' Performance and Pollutant Emissions

2003-03-03
2003-01-1060
The fundamental understanding of mixture formation and combustion process taking place in a DI diesel engine cylinder is an important parameter for engine design since they affect engine performance and pollutant emissions. Multi-dimensional CFD models are used for detailed simulation of these processes, but suffer from complexity and require significant computational time. The purpose of our work is to develop a new quasi-dimensional 3D combustion model capable of describing the air fuel mixing, combustion and pollutant formation mechanisms, on an engine cycle by cycle basis, needing reasonably low computational time compared to CFD ones, while describing in a more fundamental way the various processes compared to existing multi-zone phenomenological models. As a result, a number of problems associated with the application of multi-zone models are resolved.
Technical Paper

Meanline Modeling of Radial Turbine Performance for Turbocharger Simulation and Diagnostic Applications

2013-04-08
2013-01-0924
Simulation tools are currently extensively used to assist diesel engine development because they contribute to significant reduction of development cost and time. Given that currently the majority of DI diesel engines are turbocharged it is of vital importance the knowledge of Turbine and Compressor maps for successful prediction of engine performance. This data is often not available from T/C manufacturers, especially for the turbine. However, even if turbine maps are available, efficiency and mass flow characteristics span over a limited range of pressure ratio, due to limitations of conventional T/C test benches. Use of sophisticated T/C test bench equipment that allows measurements at a wider range of T/C pressure ratios results in increased hardware and labour cost. An alternative solution is the development of physically based models for the turbine and the compressor.
Technical Paper

Sensitivity Analysis of Multi-Zone Modeling for Combustion and Emissions Formation in Diesel Engines

2006-04-03
2006-01-1383
In the present work a sensitivity analysis is conducted using a multi-zone phenomenological model developed in the past by the author's, to estimate the effect of model's constants on engine performance and emissions. The constants used for this analysis are those embedded in the semi-empirical relations of the model, regarding air entrainment rate, combustion rate, ignition delay and evaporation rate. The model is applied on a heavy duty supercharged DI diesel engine and the effect of each of these constants on measurable engine parameters is defined. From the sensitivity analysis the relation between model constants and engine output data is derived. These results are used to define a constants determination procedure. The target is to define a limited number of adjustable constants so that the procedure can be of practical use. Following this, the calibration procedure is applied to determine the value of each constant, at various engine speeds and loads for the engine in question.
Technical Paper

Effect of Injection Pressure on the Performance and Exhaust Emissions of a Heavy Duty DI Diesel Engine

2003-03-03
2003-01-0340
During the recent years, extensive research is conducted worldwide for the purpose of tailpipe emission reduction from diesel engines. These efforts resulted in the achievement of very low emission levels for today's diesels. But considering the future legislation it is required a further drastic reduction. Towards this direction, a multi-zone combustion model is used in the present study to investigate the effect of fuel injection pressure level on the performance and pollutant emissions from a Heavy Duty DI diesel engine. For this purpose it is made use of injection pressure histories obtained from a detailed simulation model at various engine operating conditions. The increase of injection pressure is accomplished by increasing the injector opening pressure from 400 up to 1600 bar.
Technical Paper

Development and Validation of a Detailed Fuel Injection System Simulation Model for Diesel Engines

1999-03-01
1999-01-0527
The fuel injection system of diesel engines is of great importance since it controls the combustion mechanism. The rate of injection and the speed of injected fuel are important parameters for engine operation, controlling the combustion and pollutants formation mechanisms. A fuel injection system simulation capable of predicting the performance of the injection system to a good degree of accuracy has been developed. The simulation is based on a detailed geometrical description of the injection system and in modeling each subsystem as a separate control volume. The simulation starts at the driving mechanism of the fuel pump and describes all parts of the system pump chamber, delivery valve, delivery chamber, connecting pipe and injector. The components of the system are put together and interact as they do in reality. From the cam geometry an analytical expression is derived that gives the pump piston lift as a function of the engine crank angle.
Technical Paper

Development of New 3-D Multi-Zone Combustion Model for Indirect Injection Diesel Engines with a Swirl Type Prechamber

2000-03-06
2000-01-0587
During the past years most fundamental research worldwide has been concentrated on the direct injection diesel engine (DI). This engine has a lower specific fuel consumption when compared to the indirect injection diesel engine (IDI) used up to now in most passenger cars. But the application of the direct injection engine on passenger cars and light trucks has various problems. These are associated mainly with its ability to operate at high engine speeds due to the very low time available for combustion. To overcome these problems engineers have introduced various techniques such as swirl and squish for the working fluid and the use of extremely high pressure fuel injection systems to promote the air-fuel mixing mechanism. The last requires the solution of various problems associated with the use of the high pressure and relatively small injector holes.
X