Refine Your Search

Affiliation

Search Results

Journal Article

Effect of Fuel Chemical Structure and Properties on Diesel Engine Performance and Pollutant Emissions: Review of the Results of Four European Research Programs

2008-04-14
2008-01-0838
During recent years, the deterioration of greenhouse phenomenon, in conjunction with the continuous increase of worldwide fleet of vehicles and crude oil prices, raised heightened concerns over both the improvement of vehicle mileage and the reduction of pollutant emissions. Diesel engines have the highest fuel economy and thus, highest CO2 reduction potential among all other thermal propulsion engines due to their superior thermal efficiency. However, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are comparatively higher than those emitted from modern gasoline engines. Therefore, reduction of diesel emitted pollutants and especially, PM and NOx without increase of specific fuel consumption or let alone improvement of diesel fuel economy is a difficult problem, which requires immediate and drastic actions to be taken.
Journal Article

Phenomenological Modelling of Oxygen-Enriched Combustion and Pollutant Formation in Heavy-Duty Diesel Engines using Exhaust Gas Recirculation

2012-09-10
2012-01-1725
A theoretical study is conducted to examine the effects of oxygen enrichment of intake air and exhaust gas recirculation (EGR) on heavy-duty (HD) diesel engine performance characteristics and pollutant emissions. A phenomenological multi-zone model was properly modified and used to assess the impact of intake air oxygen-enhancement and EGR on the operating and environmental behavior of a HD diesel engine under various operating conditions. Initially, an experimental validation was performed to assess the predictive ability of the multi-zone model using existing data from a HD turbocharged common-rail diesel engine at the 12 operating points of the European Stationary Cycle (ESC) considering certain high-pressure cooled EGR rate at each operating point.
Technical Paper

Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines

2007-04-16
2007-01-0120
Despite the improvement in HD Diesel engine out emissions future emission legislation requires significant reduction of both NOx and particulate matter. To accomplish this task various solutions exist involving both internal and external measures. As widely recognized, it will be possibly required to employ both types of measures to meet future emission limits. Towards this direction, it is necessary to reduce NOx further using internal measures. Several solutions exist in that area, but the most feasible ones according to the present status of technical knowledge are EGR, water injection or fuel/water emulsions. These technologies aim to the reduction of both the gas temperature and oxygen concentration inside the combustion chamber that strongly affect NOx formation. However, there remain open points mainly concerning the effectiveness of water addition techniques and penalties related to bsfc and soot emissions.
Technical Paper

Evaluation of Various Rich Combustion Techniques for Diesel Engines Using Modeling

2007-04-16
2007-01-0671
Considering future emission legislation for HD diesel engines it is apparent that it will be probably necessary to employ A/T devices to achieve them. The main problem concerns the simultaneous control of both NOx and particulate emissions at an acceptable fuel penalty. Concerning particulate matter the use of particulate traps is considered to be a proven technology while for NOx emission control; various solutions exist mainly being the use of SCR catalysts or LNT devices. But LNT traps require periodical regeneration, which is accomplished by generating reducing agents i.e. CO and H2. The present investigation focuses on the regeneration of LNT devices through the engine operating cycle. This can be achieved using two techniques, additional injection of fuel at the exhaust manifold (external measures) or operation at low lambda values in the range of 1.0 or lower (internal measures).
Technical Paper

Parametric Study Based on a Phenomenological Model to Investigate the Effect of Post Fuel Injection on HDDI Diesel Engine Performance and Emissions-Model Validation Using Experimental Data

2008-04-14
2008-01-0641
A major challenge for researchers and engineers in the field of diesel engine development is the simultaneous reduction of both NOx and soot emissions from diesel engines to comply with strict future emission legislation. One of the promising internal measures that focus on the reduction of soot emissions is post fuel injection which does not have a serious effect on NOx emissions. The main parameters involved when using this technique are post fuel quantity and dwell angle between the main and the post fuel injection events. In the present work a detailed computational investigation has been conducted to determine the effect of post fuel injection on engine performance and pollutant emissions (NOx and soot). To this scope, a phenomenological multi-zone combustion model has been used, properly modified to take into account the interaction of post and main injected fuel amounts.
Technical Paper

Potentiality for Optimizing Operational Performance and Thermal Management of Diesel Truck Engine Rankine Cycle by Recovering Heat in EGR Cooler

2010-04-12
2010-01-0315
Further reduction of brake specific fuel consumption (bsfc) in heavy-duty diesel engines, which are used for vehicle applications, is of utmost importance due to high fuel prices, global warming issue (CO₂ emissions) and continuously stringent environmental regulations. Specifically, the necessity for further reduction of specific diesel oil consumption and increase of vehicle mileage, respectively, is more pronounced in large haul diesel trucks due to technical, environmental and economical reasons. Heavy-duty (HD) direction injection (DI) diesel engines are used in these vehicles, which indicate a rather high power output in the range of 200-400 kW. During recent years, various measures have been proposed from engine manufacturers and researchers for improving combustion process and through that, increasing the fuel economy of diesel engines.
Technical Paper

Identification of the Error Introduced in DI Diesel Engine Phenomenological Multi-Zone Models from Assumptions Related to the Initial Conditions at the Nozzle Exit

2010-04-12
2010-01-0153
The past decade significant research effort has concentrated on the DI diesel engine due to stringent future emission legislation which requires drastic reduction of engine tail pipe pollutant emissions, mainly PM and NOx, without significant deterioration of specific fuel consumption. Towards this effort, the important role of modeling to investigate and understand the impact of various internal measures on combustion and emissions has been widely recognized. Phenomenological models can significantly contribute towards this direction because they have acceptable prediction capability and the advantage of low computational time. This enables the production of results, on a cycle basis, that indicate the effect of various parameters on both engine performance and emissions. Therefore their use can significantly reduce engine development time (i.e. reduction of experimental effort) and cost.
Technical Paper

Multi-Zone Combustion Modeling as a Tool for DI Diesel Engine Development – Application for the Effect of Injection Pressure

2004-03-08
2004-01-0115
During the recent years, extensive research conducted worldwide in the field of Heavy Duty Diesel engines has resulted to a significant improvement of engine performance and emissions. These efforts have been assisted from simulation models providing good results. Towards this direction a multi-zone model developed by the authors has been used in the past to examine the effect of injection pressure on DI diesel engine performance and emissions. The attempt was challenging since no experimental data existed when the calculations were conducted, to support the findings. Eventually, experimental data concerning engine performance and emissions became available using slightly different operating conditions and injection pressure data. In the present study an attempt is made to evaluate the prediction ability of the multi zone model by comparing the theoretical results with experimental data and explain any discrepancies between them.
Technical Paper

Experimental Investigation to Specify the Effect of Oxygenated Additive Content and Type on DI Diesel Engine Performance and Emissions

2004-03-08
2004-01-0097
The reduction of brake specific consumption and pollutant emissions are issued as future challenges to diesel engine designers due to the depletion of fossil fuel reserves and to the continuous suppression of emission regulations. These mandates have prompted the automotive industry to couple the development of combustion systems in modern diesel engines with an adequate reformulation of diesel fuels and have stirred interest in the development of “clean” diesel fuels. The use of oxygenated fuels seems to be a promising solution towards reducing particulate emissions in existing and future diesel motor vehicles. The prospective of minimizing particulate emissions with small fuel consumption penalties seems to be quite attractive in the case of biodiesel fuels, which are considered as an alternative power source. Studies conducted in diffusion flames and compression ignition engines have shown a reduction of soot with increasing oxygen percentage.
Technical Paper

Development of a New Multi-Zone Model for the Description of Physical Processes in HCCI Engines

2004-03-08
2004-01-0562
Homogeneous Charge Compression Ignition (HCCI) engines have the potential of reducing NOx emissions as compared to conventional Diesel or SI engines. Soot emissions are also very low due to the premixed nature of combustion. However, the unburned hydrocarbon emissions are relatively high and the same holds for CO emissions. The formation of these pollutants, for a given fuel, is strongly affected by the temperature distribution as well as by the charge motion within the engine cylinder. The foregoing physical mechanisms determine the local ignition timing and burning rate of the charge affecting engine efficiency, performance and stability. Obviously the success of any model describing HCCI combustion depends on its ability to describe adequately both the chemistry of combustion and the physical phenomena, i.e. heat and mass transfer within the cylinder charge. In the present study a multi-zone model is developed to describe the heat and mass transfer mechanism within the cylinder.
Technical Paper

Validation of a Newly Developed Quasi-Dimensional Combustion Model - Application on a Heavy Duty DI Diesel Engine

2004-03-08
2004-01-0923
This work is a part of an extended investigation conducted by the authors to validate and improve a newly developed quasi-dimensional combustion model. The model has been initially applied on an old technology, naturally aspirated HSDI Diesel engine and the results were satisfying as far as performance and pollutant emissions (Soot and NO) are concerned. But since obviously further and more extended validation is required, in the present study the model is applied on a new technology, heavy-duty turbocharged DI Diesel engine equipped with a high pressure PLN fuel injection system. The main feature of the model is that it describes the air-fuel mixing mechanism in a more fundamental way compared to existing multi-zone phenomenological combustion models, while being less time consuming and complicated compared to the more accurate CFD models. The finite volume method is used to solve the conservation equations of mass, energy and species concentration.
Technical Paper

A Simulation Model for the Combustion Process of Natural Gas Engines with Pilot Diesel Fuel as an Ignition Source

2001-03-05
2001-01-1245
During the last years a great deal of efforts have been made to reduce pollutant emissions from Direct Injection Diesel Engines. The use of gaseous fuel as a supplement for liquid diesel fuel seems to be one solution towards these efforts. One of the fuels used is natural gas, which has a relatively high auto - ignition temperature and moreover it is an economical and clean burning fuel. The high auto - ignition temperature of natural gas is a serious advantage against other gaseous fuels since the compression ratio of most conventional diesel engines can be maintained. The main aspiration from the usage of dual fuel (liquid and gaseous one) combustion systems, is the reduction of particulate emissions. In the present work are given results of a theoretical investigation using a model developed for the simulation of gaseous fuel combustion processes in Dual Fuel Engines.
Technical Paper

Using Advanced Injection Timing and EGR to Improve DI Diesel Engine Efficiency at Acceptable NO and Soot Levels

2001-03-05
2001-01-0199
The direct injection diesel engine is one of the most efficient thermal engines known to man. For this reason DI diesel engines are widely used for heavy-duty applications and especially for the propulsion of trucks. Even though the efficiency of these engines is currently at a high level there still exist possibilities for further improvement. One way to accomplish this is by increasing the injection timing which usually improves, depending on the operating conditions, the indicated efficiency of the engine. On the other hand advanced injection timing has a negative effect on peak pressure causing a serious increase of its value, a negative effect on NO emissions which are also seriously increased and a positive effect on Soot emissions which are reduced. In the present work a theoretical and experimental investigation is presented to determine the effect of more advanced injection timing on engine performance and pollutant emissions.
Technical Paper

The Effect of EGR on the Performance and Pollutant Emissions of Heavy Duty Diesel Engines Using Constant and Variable AFR

2001-03-05
2001-01-0198
Pollutant emissions and specifically NO and soot are one of the most important problems that engineers have to face when developing heavy duty DI diesel engines. Two main strategies exist as options for their control, reduction inside the engine cylinder using advanced combustion and fuel injection technologies and use of after-treatment systems. In the present work it is examined the use of EGR to control the formation of NO inside the cylinder of an engine with extremely high peak pressure. The work is applied on a single cylinder truck test engine developed under a project funded by the European Community focusing on the improvement of heavy duty DI diesel engine efficiency using increased injection timing. Use is made of a simulation model to predict the effect of more advanced injection timing on engine performance and emissions. The model has been modified to include the effect of EGR used to c ontrol the formation of NO which is considerably increased at high injection timings.
Technical Paper

Using a Phenomenological Multi-Zone Model to Investigate the Effect of Injection Rate Shaping on Performance and Pollutants of a DI Heavy Duty Diesel Engine

2002-03-04
2002-01-0074
The direct injection heavy-duty diesel engine is the main propulsion unit for trucks, lories and other heavy-duty vehicles mainly due to its superior efficiency when compared to other existing reciprocating engines. However, this engine suffers from relatively high particulate and nitric oxide emission levels. Considering current legislation for emissions and especially future limits, it seems that a great deal of research is required to satisfy these limits and maintain efficiency at a high level. As widely recognized, the fuel injection mechanism plays an important role for both engine performance and pollutant emissions. The major problem is to seek solutions that enable the control of major pollutants, nitric oxide and particulate matter. For this reason, various injection rate shapes have been proposed which require sophisticated fuel injection equipment and extremely high fuel injection pressures. Now two main categories are considered, common rail fuel injection system and PLN.
Technical Paper

Theoretical and Experimental Investigation of a Direct Injection Dual Fuel Diesel-Natural Gas Engine

2002-03-04
2002-01-0868
The compression ignition engine of the dual fuel type has been employed in a wide range of applications to utilize various gaseous fuel resources while minimizing soot and oxides of nitrogen emissions without excessive increase in cost from that of conventional direct injection diesel engines. The use of natural gas as a supplement for liquid diesel fuel could be a solution towards the efforts of an economical and clean burning operation. The high auto-ignition temperature of natural gas is a serious advantage since the compression ratio of most conventional diesel engines can be maintained. In the present work a comparison between experimental and theoretical results is presented under dual fuel operation. For the theoretical investigation a computer simulation model has been developed which simulates the gaseous fuel combustion processes in dual fuel engines.
Technical Paper

Detailed Evaluation of a New Semi-Empirical Multi-Zone NOx Model by Application on Various Diesel Engine Configurations

2012-04-16
2012-01-1156
The present paper deals with the development and evaluation of a new semi-empirical, pseudo-multi-zone model capable of estimating NOx emissions for various types of diesel engines and also different engine configurations. The specific model is physically based due to the use of the first thermodynamic law and the consideration of combustion chemistry and dissociation of the combustion products during the closed part of the engine cycle. The model estimates the fuel burning rate through Heat Release Rate Analysis of the measured cylinder pressure which is then coupled to a simplified multi-zone approach, assuming that each element of fuel burns individually at controlled conditions having from this point on its own history inside the combustion chamber. From this procedure, a simplified multi-zone semi-empirical model is developed, that accounts for the temperature distribution inside the combustion chamber and its evolution during an engine operating cycle.
Technical Paper

Single Fuel Research Program Comparative Results of the Use of JP-8 Aviation Fuel versus Diesel Fuel on a Direct Injection and Indirect Injection Diesel Engine

2006-04-03
2006-01-1673
During the last years a great effort has been made by many NATO nations to move towards the use of one military fuel for all the land-based military aircraft, vehicles and equipment employed on the military arena. This idea is known to as the Single Fuel Concept (SFC). The fuel selected for the idea of SFC is the JP-8 (F-34) military aviation fuel which is based upon the civil jet fuel F-35 (Jet A-1) with the inclusion of military additives possessing anti-icing and lubricating properties. An extended experimental investigation has been conducted in the laboratory of Thermodynamic and Propulsion Systems at the Hellenic Air Force Academy. This investigation was conducted with the collaboration of the respective laboratories of National Technical University of Athens and Hellenic Naval Academy as well.
Technical Paper

Potential Benefits in Heavy Duty Diesel Engine Performance and Emissions from the Use of Variable Compression Ratio

2006-04-03
2006-01-0081
Worldwide demand for reduction of automotive fuel consumption and carbon dioxide emissions results in the introduction of new diesel engine technologies. A promising technique for increasing the power density of reciprocating engines, improving fuel economy and curtailing engine exhaust emissions is the use of variable compression ratio (VCR) technology. Several automotive manufacturers have developed prototype vehicles equipped with VCR gasoline engines. The constructive pattern followed to alter the compression ratio varies with the manufacturer. The implementation of VCR technology offers two main advantages: the reduction of CO2 emissions due to optimal combustion efficiency in the entire range of engine operating conditions and the increase of power concentration due to high boosting of a small engine displacement (i.e., engine downsizing).
Technical Paper

Use of Water Emulsion and Intake Water Injection as NOx Reduction Techniques for Heavy Duty Diesel Engines

2006-04-03
2006-01-1414
Diesel engine manufacturers are currently intensifying their efforts to meet future emission limits that require a drastic reduction of NOx and particulate matter compared to present values. Even though several after-treatment techniques have been developed for tailpipe NOx reduction in heavy duty diesel engines, the in-cylinder control of NOx formation still remains of utmost importance. Various methods have been used to control NOx formation in diesel engines such as retarded injection timing and EGR providing each one of them very promising results. However, use of these techniques is accompanied by penalties in specific fuel consumption and exhaust soot. A promising technology for NOx reduction especially for heavy-duty diesel engines and mainly large scale ones is the addition of water to the combustion chamber to reduce peak combustion temperature that obviously affects NOx formation.
X