Refine Your Search

Search Results

Technical Paper

Combustion and Emission Modeling for a Direct Injection Diesel Engine

2004-03-08
2004-01-0104
In order to improve the predicting capability of KIVA-3V code for a diesel engine, various numerical models were reviewed. From the comparison of TAB, wave and χ - square distribution models for atomization of a liquid fuel jet, it was found that the wave model was most suitable for predicting a diesel spray because of proper breakup length. The high pressure evaporation model, which considered the air in a combustion chamber as a real gas, predicted earlier ignition about 0.7 °CA than the low pressure model. For the diesel ignition, the Hardenberg model predicted shorter ignition delay than the Shell model and measurements, and the Hardenberg model showed the spatially uniform ignition. For soot emission, the phenomenological models suggested by Foster, Belardini and Hiroyasu were studied. The Hiroyasu model could be used effectively for the prediction of soot emission although it did not provide detailed information on soot formation.
X