Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Ignition Characteristics of Ethane and Its Roles in Natural Gas for HCCI Engine Operation

2015-04-14
2015-01-0811
The ignition characteristics of each component of natural gas and the chemical kinetic factors determining those characteristics were investigated using detailed chemical kinetic calculations. Ethane (C2H6) showed a relatively short ignition delay time with high initial temperature; the heat release profile was slow in the early stage of the ignition process and rapid during the late stage. Furthermore, the ignition delay time of C2H6 showed very low dependence on O2 concentration. In the ignition process of C2H6, HO2 is generated effectively by several reaction paths, and H2O2 is generated from HO2 and accumulated with a higher concentration, which promotes the OH formation rate of H2O2 (+ M) = OH + OH (+ M). The ignition characteristics for C2H6 can be explained by H2O2 decomposition governing OH formation at any initial temperature.
Technical Paper

Universal Rule of Hydrocarbon Oxidation

2009-04-20
2009-01-0948
Hydrocarbon thermal ignition in internal combustion engines is controlled by the balance of heat release rate by chemical reactions and internal energy formation or removal rate by adiabatic compression or expansion. Heat release rate can be described by a simple “Universal Rule”, that the heat release rate during the thermal ignition preparation period is determined by H2O2 loop composed of four elementary reactions. This rule was validated by sensitivity analysis and response analysis to perturbation of intermediate species concentrations. The rule was applied to clarify several subjects with experimental backgrounds, such as ignition characteristics of higher octane number fuels, an old and well-known knocking model and the influence of H2 addition.
Technical Paper

Chemical Kinetics Study on Effect of Pressure and Fuel, O2 and N2 Molar Concentrations on Hydrocarbon Ignition Process

2012-04-16
2012-01-1113
Ignition process chemistry was analyzed using a detailed chemical kinetic model of n-heptane generated by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), wherein pressure-dependent rate constants of the O₂ addition to alkyl radicals and hydroperoxy alkyl radicals and the thermal decomposition of ketohydroperoxides have been introduced. Then, the effect of the initial pressure and the individual effects of the initial fuel, O₂ and N₂ molar concentrations on a relationship between the initial temperature and the ignition delay were discussed. When the initial temperature increases, the branch of C₇H₁₄OOH removal into the second O₂ addition and the decomposition into C₇H₁₄cyO and OH is more sensitive to the pressure and the O₂ concentration, and thus, the LTO preparation phase is more affected by the pressure and the O₂ concentration. The LTO phase terminates mainly by the OH removal by intermediate species.
Technical Paper

Lumped Chemical Kinetic Model Based on the Detailed Analysis of Hydrocarbon Fuel Ignition

2011-08-30
2011-01-1782
A systematic chemical lumping method has been proposed, based on the detailed kinetic analysis of hydrocarbon fuel ignitions. The model constructed by using this method contains two reaction sets, RO2 and fragment reaction package. The ignition characteristics of each fuel can be reflected by only adjusting several rate parameters in RO2 reaction package. From the comparison with detailed model, it was confirmed that this simplified model well reproduces the results of detailed one without missing the kinetics of hydrocarbon ignitions. We concluded that this new lumping approach has the possibility to be applicable to every hydrocarbon fuels.
Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

2015-09-01
2015-01-1916
Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
X