Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Analysis of Transient HC, CO, NOx and CO2 Emissions from a GDI Engine using Fast Response Gas Analyzers

2011-04-12
2011-01-1227
A study has been conducted to measure the transient HC, NOx, CO, CO2 and particulate emissions from a modern 1.6-liter, Euro IV-stage turbocharged Gasoline Direct Injection (GDI) passenger car engine. The tests were conducted using ultra-fast-response analyzers with millisecond response times so that the real-time effects of the individual combustion events and the ECU's start strategy could be studied. The results show that through the use of an aggressive cold start calibration strategy, the catalyst is very efficient after light-off at about 30s. However, during this same period, there are signs of partial misfires and rich AFR excursions, both of which contribute to the overall tailpipe emissions. The data from the fast-response analyzers allowed clear discrimination between rich events and partial misfires and would allow appropriate calibration actions to be taken.
Technical Paper

Measurement of Gasoline Exhaust Hydrogen Emissions

2004-03-08
2004-01-0592
Hydrogen is a reactive species involved with many combustion and catalysis reactions. Traditionally studies on hydrogen relied on theoretical calculation of engine out emissions. This study used a mass spectrometer to measure hydrogen emissions at engine out and tailpipe for a port fuelled injection (PFI) gasoline vehicle. Comparison of measured with calculated for engine out hydrogen showed good agreement. However, catalyst ageing affected post catalyst hydrogen levels to an extent that would be difficult to model by calculation. Study shows that for a detailed understanding of the influence of hydrogen on combustion and catalyst performance the preferred approach is measurement rather than calculation.
Technical Paper

Effect of Catalyst Inlet Cone Flow Mal-Distribution on Emissions Performance of a Close-Coupled Catalytic Converter

2004-03-08
2004-01-1489
The emissions performance of a prototype close-coupled catalyst system has been analysed and compared with semi-close-coupled and underfloor systems. Under certain engine conditions during the stabilized region of the ECE Stage 3 drive-cycle, the close-coupled system has showed higher emissions than the semi-close-coupled or underfloor configurations. Using fast response emissions analysers and catalyst warm-up characteristics in conjunction with Computational Fluid Dynamics (CFD), the reasons for this emissions performance deficit has been attributed to flow maldistribution across the front face of the catalyst. Two flow distribution-related mechanisms for emissions breakthrough have been isolated: radial variations in mean AFR (Air-Fuel Ratio) across the catalyst can cause localized emissions breakthrough due to cylinder-to-cylinder AFR variations; and under high space velocity conditions, localized breakthrough can occur due to radial variations in gas velocity through the catalyst.
X