Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Cfd Diagnostic Methodology for the Assessment of Mixture Formation Quality in GDI Engines

2011-09-11
2011-24-0151
The fuel injection plays a crucial role in determining the mixture formation process in Gasoline Direct Injection (GDI) engines. Pollutant emissions, and soot emissions in particular, as well as phenomena affecting engine reliability, such as oil dilution and injector coking, are deeply influenced by the injection system features, such as injector geometric characteristics (such as injector type, injector position and targeting within the combustion chamber) and operating characteristics (such as injection pressure, injection phasing, etc.). In this paper, a new CFD methodology is presented, allowing a preliminary assessment of the mixture formation quality in terms of expected soot emissions, oil dilution and injector coking risks for different injection systems (such as for instance multihole or swirl injectors) and different injection strategies, from the early stages of a new engine design.
Technical Paper

CFD Analysis and Experimental Validation of the Inlet Flow Distribution in Close Coupled Catalytic Converters

2003-10-27
2003-01-3072
The unsteady flow effects in two different close coupled catalytic converters were investigated in order to achieve a better understanding of the steady state experimental tests which are usually performed to evaluate a flow distribution. Firstly the validity of a CFD model was achieved through a comparison of some steady state simulations with the results of HWA experimental measurements. Several different formulations of the uniformity index, that were found in literature, were then compared, trying to highlight the strengths and shortcomings of each one. Further information was derived from a comparison of the two catalysts that were tested to achieve a general methodology that would be useful for future analysis. Finally, a new approach to evaluate the flow distribution using a steady state analysis was proposed by comparing the results of a transient simulation that was obtained for a whole engine cycle.
Technical Paper

GDI Swirl Injector Spray Simulation:A Combined Phenomenological-CFD Approach

2004-10-25
2004-01-3005
In this work the formation and the evolution of the fuel spray emerging from a hollow-cone swirl injector were investigated. The first aim of the work was to set up a tool for fuel spray simulation in a CFD analysis that can offer a reasonable accuracy with no significant increment in the computational time. The analysis started from a theoretical formulation of the fuel flow inside the injector, based on the potential theory, obtaining an injector model which allows the calculation of the main spray characteristics usually required by the CFD analysis (i.e. droplet velocity, fuel film thickness, droplet size distribution). These parameters can be obtained only from spray cone angle and mass flow rate, which are the data commonly provided by injector manufacturers. Furthermore, a phenomenological approach was also presented, in order to properly simulate in CFD analysis the spray tip penetration in the dense spray zone, without requiring an increase of the spatial grid resolution.
X