Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Cfd Diagnostic Methodology for the Assessment of Mixture Formation Quality in GDI Engines

2011-09-11
2011-24-0151
The fuel injection plays a crucial role in determining the mixture formation process in Gasoline Direct Injection (GDI) engines. Pollutant emissions, and soot emissions in particular, as well as phenomena affecting engine reliability, such as oil dilution and injector coking, are deeply influenced by the injection system features, such as injector geometric characteristics (such as injector type, injector position and targeting within the combustion chamber) and operating characteristics (such as injection pressure, injection phasing, etc.). In this paper, a new CFD methodology is presented, allowing a preliminary assessment of the mixture formation quality in terms of expected soot emissions, oil dilution and injector coking risks for different injection systems (such as for instance multihole or swirl injectors) and different injection strategies, from the early stages of a new engine design.
Technical Paper

Experimental Investigation on Soot and NOx Formation in a DI Common Rail Diesel Engine with Pilot Injection

2001-03-05
2001-01-0657
The influence of pilot injection timing and quantity on soot, NOx, combustion noise and bsfc has been analyzed on a passenger car DI Diesel engine prototype equipped with a common rail fuel injection system. The investigated engine operating points were 1500/5, 2000/2, 2500/8 rpm/bar, which are quite typical of EC driving cycles. For each of these operating conditions, the pilot injection quantity was varied by up to 15% of the total injected quantity and the pilot injection timing was varied between 32° and 1° crank angle degrees. The principal combustion characteristics were determined on the basis of the heat release, and a thorough statistical analysis was performed to infer the correlation between the combustion parameters and soot and NOx emissions.
Technical Paper

Analysis of Multiple Injection Strategies for the Reduction of Emissions, Noise and BSFC of a DI CR Small Displacement Non-Road Diesel Engine

2002-10-21
2002-01-2672
The influence of different multiple injection strategies on the emissions, combustion noise and BSFC (brake specific fuel consumption) of a small non-road diesel engine prototype equipped with a Common Rail (CR) fuel injection system has been analysed. The two most critical operating points according to the ISO 8178 - C1 test cycle as far as the exhaust emissions are concerned (Intermediate Speed/Full Load; Rated Speed/Full Load) were considered. Different injection strategies, each with a fixed number of consecutive injections (up to 4), were tested for the selected operating points. It was found that multiple injection strategies can be very effective also for small displacement non-road diesel engines in reducing particulate matter (PM), NOx and noise levels without increasing fuel consumption.
Technical Paper

Influence of Multiple Injection Strategies on Emissions, Combustion Noise and BSFC of a DI Common Rail Diesel Engine

2002-03-04
2002-01-0503
High pressure common-rail injection systems nowadays allow a very high degree of flexibility in the timing and quantity control of multiple injections, which can be used to obtain significant reductions in engine noise and emissions. The aim of this study is to develop a better understanding of the relationship between injection strategies and the combustion and emission formation process. Some multiple injection strategies (pilot-pilot-main and pilot-main-after) have therefore been analyzed to highlight their influence on soot, NOx, combustion noise and bsfc (brake specific fuel consumption) on a passenger car DI Diesel engine prototype. One operating point (2000×2 rpm/bar) was analyzed for the pilot-pilot-main injection strategy while two operating points (1500×5 and 2500×8 rpm/bar) were tested for the pilot-main-after injection strategy.
X